Displaying publications 61 - 80 of 490 in total

Abstract:
Sort:
  1. Lee CH, Khalina A, Lee SH
    Polymers (Basel), 2021 Jan 29;13(3).
    PMID: 33573036 DOI: 10.3390/polym13030438
    Plant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials. Interfacial adhesion mechanisms are among the most influential yet seldom discussed factors that affect the physical, mechanical, and thermal properties of the plant-fibers-reinforced polymer composites. Therefore, this review paper expounds the importance of interfacial adhesion condition on the properties of plant-fiber-reinforced polymer composites. The advantages and disadvantages of natural plant fibers are discussed. Four important interface mechanism, namely interdiffusion, electrostatic adhesion, chemical adhesion, and mechanical interlocking are highlighted. In addition, quantifying and analysis techniques of interfacial adhesion condition is demonstrated. Lastly, the importance of interfacial adhesion condition on the performances of the plant fiber polymer composites performances is discussed. It can be seen that the physical and thermal properties as well as flexural strength of the composites are highly dependent on the interfacial adhesion condition.
    Matched MeSH terms: Physical Phenomena
  2. Asnawi ASFM, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, et al.
    Polymers (Basel), 2021 Jan 26;13(3).
    PMID: 33530553 DOI: 10.3390/polym13030383
    The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10-5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O-H, C-H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
    Matched MeSH terms: Physical Phenomena
  3. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH
    Langmuir, 2021 Jan 26;37(3):983-1000.
    PMID: 33443436 DOI: 10.1021/acs.langmuir.0c02758
    When two or more droplets coalesce on a superhydrophobic surface, the merged droplet can jump spontaneously from the surface without requiring any external energy. This phenomenon is defined as coalescence-induced droplet jumping and has received significant attention due to its potential applications in a variety of self-cleaning, anti-icing, antifrosting, and condensation heat-transfer enhancement uses. This article reviews the research and applications of coalescence-induced droplet jumping behavior in recent years, including the influence of droplet parameters on coalescence-induced droplet jumping, such as the droplet size, number, and initial velocity, to name a few. The main structure types and influence mechanism of the superhydrophobic substrates for coalescence-induced droplet jumping are described, and the potential application areas of coalescence-induced droplet jumping are summarized and forecasted.
    Matched MeSH terms: Physical Phenomena
  4. R Koloor SS, Karimzadeh A, Abdullah MR, Petrů M, Yidris N, Sapuan SM, et al.
    Polymers (Basel), 2021 Jan 22;13(3).
    PMID: 33498984 DOI: 10.3390/polym13030344
    The stiffness response or load-deformation/displacement behavior is the most important mechanical behavior that frequently being utilized for validation of the mathematical-physical models representing the mechanical behavior of solid objects in numerical method, compared to actual experimental data. This numerical study aims to investigate the linear-nonlinear stiffness behavior of carbon fiber-reinforced polymer (CFRP) composites at material and structural levels, and its dependency to the sets of individual/group elastic and damage model parameters. In this regard, a validated constitutive damage model, elastic-damage properties as reference data, and simulation process, that account for elastic, yielding, and damage evolution, are considered in the finite element model development process. The linear-nonlinear stiffness responses of four cases are examined, including a unidirectional CFRP composite laminate (material level) under tensile load, and also three multidirectional composite structures under flexural loads. The result indicated a direct dependency of the stiffness response at the material level to the elastic properties. However, the stiffness behavior of the composite structures depends both on the structural configuration, geometry, lay-ups as well as the mechanical properties of the CFRP composite. The value of maximum reaction force and displacement of the composite structures, as well as the nonlinear response of the structures are highly dependent not only to the mechanical properties, but also to the geometry and the configuration of the structures.
    Matched MeSH terms: Physical Phenomena
  5. Halilu A, Hayyan M, Aroua MK, Yusoff R, Hizaddin HF
    Phys Chem Chem Phys, 2021 Jan 21;23(2):1114-1126.
    PMID: 33346756 DOI: 10.1039/d0cp04903d
    Understanding the reaction mechanism that controls the one-electron electrochemical reduction of oxygen is essential for sustainable use of the superoxide ion (O2˙-) during CO2 conversion. Here, stable generation of O2˙- in butyltrimethylammonium bis(trifluoromethylsulfonyl)imide [BMAmm+][TFSI-] ionic liquid (IL) was first detected at -0.823 V vs. Ag/AgCl using cyclic voltammetry (CV). The charge transfer coefficient associated with the process was ∼0.503. It was determined that [BMAmm+][TFSI-] is a task-specific IL with a large negative isovalue surface density accrued from the [BMAmm+] cation with negatively charged C(sp2) and C(sp3). Consequently, [BMAmm+][TFSI-] is less susceptible to the nucleophilic effect of O2˙- because only 8.4% O2˙- decay was recorded from 3 h long-term stability analysis. The CV analysis also detected that O2˙- mediated CO2 conversion in [BMAmm+][TFSI-] at -0.806 V vs. Ag/AgCl as seen by the disappearance of the oxidative faradaic current of O2˙-. Electrochemical impedance spectroscopy (EIS) detected the mechanism of O2˙- generation and CO2 conversion in [BMAmm+][TFSI-] for the first time. The EIS parameters in O2 saturated [BMAmm+][TFSI-] were different from those detected in O2/CO2 saturated [BMAmm+][TFSI-] or CO2 saturated [BMAmm+][TFSI-]. This was rationalized to be due to the formation of a [BMAmm+][TFSI-] film on the GC electrode, creating a 2.031 × 10-9 μF cm-2 double-layer capacitance (CDL). Therefore, during the O2˙- generation and CO2 utilization in [BMAmm+][TFSI-], the CDL increased to 5.897 μF cm-2 and 7.763 μF cm-2, respectively. The CO2 in [BMAmm+][TFSI-] was found to be highly unlikely to be electrochemically converted due to the high charge transfer resistance of 6.86 × 1018 kΩ. Subsequently, O2˙- directly mediated the CO2 conversion through a nucleophilic addition reaction pathway. These results offer new and sustainable opportunities for utilizing CO2 by reactive oxygen species in ionic liquid media.
    Matched MeSH terms: Physical Phenomena
  6. Rizal S, Olaiya FG, Saharudin NI, Abdullah CK, N G O, Mohamad Haafiz MK, et al.
    Polymers (Basel), 2021 Jan 20;13(3).
    PMID: 33498323 DOI: 10.3390/polym13030325
    Textile waste cellulose nanofibrillated fibre has been reported with excellent strength reinforcement ability in other biopolymers. In this research cellulose nanofibrilated fibre (CNF) was isolated from the textile waste cotton fabrics with combined supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was used to enhance the polylactic acid/chitin (PLA/chitin) properties. The properties enhancement effect of the CNF was studied by characterising the PLA/chitin/CNF biocomposite for improved mechanical, thermal, and morphological properties. The tensile properties, impact strength, dynamic mechanical analysis, thermogravimetry analysis, scanning electron microscopy, and the PLA/chitin/CNF biocomposite wettability were studied. The result showed that the tensile strength, elongation, tensile modulus, and impact strength improved significantly with chitin and CNF compared with the neat PLA. Furthermore, the scanning electron microscopy SEM (Scanning Electron Microscopy) morphological images showed uniform distribution and dispersion of the three polymers in each other, which corroborate the improvement in mechanical properties. The biocomposite's water absorption increased more than the neat PLA, and the contact angle was reduced. The results of the ternary blend compared with PLA/chitin binary blend showed significant enhancement with CNF. This showed that the three polymers' combination resulted in a better material property than the binary blend.
    Matched MeSH terms: Physical Phenomena
  7. Hazrol MD, Sapuan SM, Zainudin ES, Zuhri MYM, Abdul Wahab NI
    Polymers (Basel), 2021 Jan 12;13(2).
    PMID: 33445740 DOI: 10.3390/polym13020242
    The research included corn starch (CS) films using sorbitol (S), glycerol (G), and their combination (SG) as plasticizers at 30, 45, and 60 wt %, with a traditional solution casting technique. The introduction of plasticizer to CS film-forming solutions led to solving the fragility and brittleness of CS films. The increased concentration of plasticizers contributed to an improvement in film thickness, weight, and humidity. Conversely, plasticized films reduced their density and water absorption, with increasing plasticizer concentrations. The increase in the amount of the plasticizer from 30 to 60% showed a lower impact on the moisture content and water absorption of S-plasticized films. The S30-plasticized films also showed outstanding mechanical properties with 13.62 MPa and 495.97 MPa, for tensile stress and tensile modulus, respectively. Glycerol and-sorbitol/glycerol plasticizer (G and SG) films showed higher moisture content and water absorption relative to S-plasticized films. This study has shown that the amount and type of plasticizers significantly affect the appearances, physical, morphological, and mechanical properties of the corn starch biopolymer plastic.
    Matched MeSH terms: Physical Phenomena
  8. Siti-Munirah MY, Suhaimi-Miloko Z, Ahmad MIZ
    PhytoKeys, 2021;172:121-134.
    PMID: 33664611 DOI: 10.3897/phytokeys.172.59336
    This report describes Thismia belumensis Siti-Munirah & Suhaimi-Miloko, a novel species of achlorophyllous herb discovered in the Royal Belum State Park, Peninsular Malaysia. This new species is unlike any previously described species of Thismia. In particular, T. belumensis possesses a unique annulus, which has been expanded and modified into a cucullate (hood-like) structure. This structure covers the apical floral tube and has an opening on one side facing a thickened part of the annulus, and the off-centre floral aperture confers a zygomorphic symmetry to the flower, indicating T. belumensis is more similar to Thismia labiata J.J.Sm. This morphological detail makes this new species distinct from all other described species of Thismia. In this report, we provide descriptions, illustrations, colour plates, and the provisional conservation status of Thismia belumensis.
    Matched MeSH terms: Physical Phenomena
  9. Lu S, Zhang Y, Zhang ZH, Tsai PC, Zhang X, Tan ST, et al.
    Front Chem, 2021;9:639023.
    PMID: 33816438 DOI: 10.3389/fchem.2021.639023
    Strain-reduced micro-LEDs in 50 μm × 50 μm, 100 μm × 100 μm, 200 μm × 200 μm, 500 μm × 500 μm, and 1,000 μm × 1,000 μm sizes were grown on a patterned c-plane sapphire substrate using partitioned growth with the metal-organic chemical-vapor deposition (MOCVD) technique. The size effect on the optical properties and the indium concentration for the quantum wells were studied experimentally. Here, we revealed that the optical properties can be improved by decreasing the chip size (from 1,000 to 100 µm), which can correspondingly reduce the in-plane compressive stress. However, when the chip size is further reduced to 50 μm × 50 μm, the benefit of strain release is overridden by additional defects induced by the higher indium incorporation in the quantum wells and the efficiency of the device decreases. The underlying mechanisms of the changing output power are uncovered based on different methods of characterization. This work shows the rules of thumb to achieve optimal power performance for strain-reduced micro-LEDs through the proposed partitioned growth process.
    Matched MeSH terms: Physical Phenomena
  10. Fadzidah Mohd Idris, Khamirul Amin Matori, Idza Riati Ibrahim, Rodziah Nazlan, Mohd Shamsul Ezzad Shafie
    MyJurnal
    The rapid growth of electronic systems and devices operating within the gigahertz (GHz) frequency range has increased electromagnetic interference. In order to eliminate or reduce the spurious electromagnetic radiation levels more closely in different applications, there is strong research interest in electromagnetic absorber technology. Moreover, there is still a lack of ability to absorb electromagnetic radiation in a broad frequency range using thin thickness. Thus, this study examined the effect of incorporating magnetic and dielectric materials into the polymer matrix for the processing of radar absorbing materials. The experiment evaluated the sample preparation with different weight percentages of multi-walled carbon nanotubes (MWCNT) mixed with Ni0.5Zn0.5Fe2O4 (Nickel-Zinc-Ferrite) loaded into epoxy (P) as a matrix. The prepared samples were analysed by examining the reflectivity measurements in the 8 – 18 GHz frequency range and conducting a morphological study using scanning electron microscopy analyses. The correlation of the results showed that different amounts of MWCNT influenced the performance of the microwave absorber. As the amount of MWCNTs increased, the reflection loss (RL) peak shifted towards a lower frequency range and the trend was similar for all thicknesses. The highest RL was achieved when the content of MWCNTs was 2 wt% with a thickness of 2 mm with an RL of – 14 dB at 16 GHz. The 2.5 GHz bandwidth corresponded to the RL below -10 dB (90% absorption) in the range of 14.5 – 17 GHz. This study showed that the proposed experimental route provided flexible absorbers with suitable absorption values by mixing only 2 wt% of MWCNTs.

    Matched MeSH terms: Physical Phenomena
  11. Muhammad Aniq Qayyum Mohamad Sukry, Norazlina Subani, Muhammad Arif Hannan, Faizzuddin Jamaluddin, Ahmad Danial Hidayatullah Badrolhisam
    MyJurnal
    Partial differential equations involve results of unknown functions when there are multiple independent variables. There is a need for analytical solutions to ensure partial differential equations could be solved accurately. Thus, these partial differential equations could be solved using the right initial and boundaries conditions. In this light, boundary conditions depend on the general solution; the partial differential equations should present particular solutions when paired with varied boundary conditions. This study analysed the use of variable separation to provide an analytical solution of the homogeneous, one-dimensional heat equation. This study is applied to varied boundary conditions to examine the flow attributes of the heat equation. The solution is verified through different boundary conditions: Dirichlet, Neumann, and mixed-insulated boundary conditions. the initial value was kept constant despite the varied boundary conditions. There are two significant findings in this study. First, the temperature profile changes are influenced by the boundary conditions, and that the boundary conditions are dependent on the heat equation’s flow attributes.

    Matched MeSH terms: Physical Phenomena
  12. ALIATULNAJIHA AYUB, MOHD ASAMUDIN A RAHMAN
    MyJurnal
    A numerical study is conducted to determine the Vortex Induced Motion (VIM) effects on Deep-Draft Semi-Submersibles (DDSS). The VIM phenomena is a crucial problem that can cause severe impact on the fatigue life of mooring risers in DDSS. Therefore, a comprehensive numerical simulation is conducted using the Acusolve computational fluid dynamics (CFD) software. Five models of immersed columns with different aspect ratios (ie. 0.6, 0.8, 1.0, 1.2 and 1.4) are numerically investigated under two different incidence angles, which are 0° and 45°. The transverse and in-line vibration amplitude, amplitude of lift force coefficient and vortex shedding are analyzed. The numerical measurements are obtained to see the response of horizontal plane motions, which are transverse, in line and yaw motions. This study with detailed numerical results from parametric data will contribute future studies and the comparisons are made to demonstrate the capability of the present CFD approach.
    Matched MeSH terms: Physical Phenomena
  13. Affa Rozana Abdul Rashid, Nur Insyierah Md Sarif, Khadijah Ismail
    MyJurnal
    The consumption of low-power electronic devices has increased rapidly, where almost all applications use power electronic devices. Due to the increase in portable electronic devices’ energy consumption, the piezoelectric material is proposed as one of the alternatives of the significant alternative energy harvesters. This study aims to create a prototype of “Smart Shoes” that can generate electricity using three different designs embedded by piezoelectric materials: ceramic, polymer, and a combination of both piezoelectric materials. The basic principle for smart shoes’ prototype is based on the pressure produced from piezoelectric material converted from mechanical energy into electrical energy. The piezoelectric material was placed into the shoes’ sole, and the energy produced due to the pressure from walking, jogging, and jumping was measured. The energy generated was stored in a capacitor as piezoelectric material produced a small scale of energy harvesting. The highest energy generated was produced by ceramic piezoelectric material under jumping activity, which was 1.804 mJ. Polymer piezoelectric material produced very minimal energy, which was 55.618 mJ. The combination of both piezoelectric materials produced energy, which was 1.805 mJ from jumping activity.

    Matched MeSH terms: Physical Phenomena
  14. Norha Abdul Hadi, Mawar Hasyikin Abu Seman, Madhiyah Yahaya Bermakai
    MyJurnal
    Derivation of activated carbon from biomass wastes for energy storage applications such as fuel cells and supercapacitors are attracting wide attractions as the world is now demand for other sustainable energy that can help to explore new technologies especially for energy conversion and storage. This is important because the world now is facing a rapid depletion of fossil energy. In this review, an outline of recent trends towards biomass-derived specifically from fruit-based biomass wastes is explained in a holistic manner. Thanks to their high carbon content, high specific surface area and developed porous structure, biomass-derived chars can be treated and converted into carbon. The performance of activated carbon in terms of Brunette Emmet Teller (BET) surface area, micropore volume, total pore volume and specific capacitance has been reported. This review showed that higher BET surface will contribute to higher pore volume in the activated carbon that makes them good candidates for the fabrication of electrodes in supercapacitor applications. This study was focused on providing a detailed comparison of published studies that utilized different physical and chemical routes and their effect of modification such as various activation temperatures and the ratio of activating agents towards the performance of the activated carbon under different parameters. Implementing chemical routes with an ideal 600°C – 850°C and inclusion ratio might be effective to produce high performance activated carbon.
    Matched MeSH terms: Physical Phenomena
  15. Khalid AM, Hossain MS, Ismail N, Khalil NA, Balakrishnan V, Zulkifli M, et al.
    Polymers (Basel), 2020 Dec 30;13(1).
    PMID: 33396583 DOI: 10.3390/polym13010112
    In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
    Matched MeSH terms: Physical Phenomena
  16. Teow YH, Ooi BS, Ahmad AL, Lim JK
    Membranes (Basel), 2020 Dec 24;11(1).
    PMID: 33374274 DOI: 10.3390/membranes11010016
    Natural organic matters (NOMs) have been found to be the major foulant in the application of ultrafiltration (UF) for treating surface water. Against this background, although hydrophilicity has been demonstrated to aid fouling mitigation, other parameters such as membrane surface morphology may contribute equally to improved fouling resistance. In this work, with humic acid solution as the model substance, the effects of titanium dioxides (TiO2) types (PC-20, P25, and X500) on membrane anti-fouling and defouling properties were comparatively analysed. The aims are (1) to determine the correlation between membrane surface morphology and membrane fouling and (2) to investigate the anti-fouling and UV-cleaning abilities of PVDF/TiO2 mixed-matrix membranes with different membrane topographies and surface energy conditions. The mixed-matrix membrane with P25 TiO2 exhibited the most significant UV-defouling ability, with a high irreversible flux recovery ratio (IFRR(UV)) of 16.56 after 6 h of UV irradiation, whereas that with X500 TiO2 exhibited both superior anti-fouling and defouling properties due to its smoother surface and its highly reactive surface layer.
    Matched MeSH terms: Physical Phenomena
  17. Khasawneh AM, Kaiwartya O, Lloret J, Abuaddous HY, Abualigah L, Shinwan MA, et al.
    Sensors (Basel), 2020 Dec 18;20(24).
    PMID: 33353003 DOI: 10.3390/s20247278
    In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.
    Matched MeSH terms: Physical Phenomena
  18. Zhang W, Mohamed AR, Ong WJ
    Angew Chem Int Ed Engl, 2020 Dec 14;59(51):22894-22915.
    PMID: 32009290 DOI: 10.1002/anie.201914925
    Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.
    Matched MeSH terms: Physical Phenomena
  19. Zeng H, Wu M, Wang HQ, Zheng JC, Kang J
    Materials (Basel), 2020 Dec 12;13(24).
    PMID: 33322841 DOI: 10.3390/ma13245686
    The magnetic and electronic properties of boron-doped SrTiO3 have been studied by first-principles calculations. We found that the magnetic ground states of B-doped SrTiO3 strongly depended on the dopant-dopant separation distance. As the dopant-dopant distance varied, the magnetic ground states of B-doped SrTiO3 can have nonmagnetic, ferromagnetic or antiferromagnetic alignment. The structure with the smallest dopant-dopant separation exhibited the lowest total energy among all configurations considered and was characterized by dimer pairs due to strong attraction. Ferromagnetic coupling was observed to be stronger when the two adjacent B atoms aligned linearly along the B-Ti-B axis, which could be associated with their local bonding structures. Therefore, the symmetry of the local structure made an important contribution to the generation of a magnetic moment. Our study also demonstrated that the O-Ti-O unit was easier than the Ti-B-Ti unit to deform. The electronic properties of boron-doped SrTiO3 tended to show semiconducting or insulating features when the dopant-dopant distance was less than 5 Å, which changed to metallic properties when the dopant-dopant distance was beyond 5 Å. Our calculated results indicated that it is possible to manipulate the magnetism and band gap via different dopant-dopant separations.
    Matched MeSH terms: Physical Phenomena
  20. Mohamad Kasim AS, Ariff AB, Mohamad R, Wong FWF
    Nanomaterials (Basel), 2020 Dec 10;10(12).
    PMID: 33321788 DOI: 10.3390/nano10122475
    Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links