Displaying publications 61 - 80 of 168 in total

Abstract:
Sort:
  1. Farook TH, Barman A, Abdullah JY, Jamayet NB
    J Prosthodont, 2021 Jun;30(5):420-429.
    PMID: 33200429 DOI: 10.1111/jopr.13286
    PURPOSE: Mesh optimization reduces the texture quality of 3D models in order to reduce storage file size and computational load on a personal computer. This study aims to explore mesh optimization using open source (free) software in the context of prosthodontic application.

    MATERIALS AND METHODS: An auricular prosthesis, a complete denture, and anterior and posterior crowns were constructed using conventional methods and laser scanned to create computerized 3D meshes. The meshes were optimized independently by four computer-aided design software (Meshmixer, Meshlab, Blender, and SculptGL) to 100%, 90%, 75%, 50%, and 25% levels of original file size. Upon optimization, the following parameters were virtually evaluated and compared; mesh vertices, file size, mesh surface area (SA), mesh volume (V), interpoint discrepancies (geometric similarity based on virtual point overlapping), and spatial similarity (volumetric similarity based on shape overlapping). The influence of software and optimization on surface area and volume of each prosthesis was evaluated independently using multiple linear regression.

    RESULTS: There were clear observable differences in vertices, file size, surface area, and volume. The choice of software significantly influenced the overall virtual parameters of auricular prosthesis [SA: F(4,15) = 12.93, R2 = 0.67, p < 0.001. V: F(4,15) = 9.33, R2 = 0.64, p < 0.001] and complete denture [SA: F(4,15) = 10.81, R2 = 0.67, p < 0.001. V: F(4,15) = 3.50, R2 = 0.34, p = 0.030] across optimization levels. Interpoint discrepancies were however limited to <0.1mm and volumetric similarity was >97%.

    CONCLUSION: Open-source mesh optimization of smaller dental prostheses in this study produced minimal loss of geometric and volumetric details. SculptGL models were most influenced by the amount of optimization performed.

    Matched MeSH terms: Dental Prosthesis Design
  2. Al-Fakih E, Arifin N, Pirouzi G, Mahamd Adikan FR, Shasmin HN, Abu Osman NA
    J Biomed Opt, 2017 Aug;22(8):1-8.
    PMID: 28822140 DOI: 10.1117/1.JBO.22.8.087001
    This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
    Matched MeSH terms: Prosthesis Design
  3. Abbas SS, Nasif MS, Al-Waked R, Meor Said MA
    Artif Organs, 2020 Feb;44(2):E20-E39.
    PMID: 31378963 DOI: 10.1111/aor.13536
    Platelet activation induced by shear stresses and non-physiological flow field generated by bileaflet mechanical heart valves (BMHVs) leads to thromboembolism, which can cause fatal consequences. One of the causes of platelet activation could be intermittent regurgitation, which arises due to asynchronous movement and rebound of BMHV leaflets during the valve closing phase. In this numerical study, the effect of intermittent regurgitation on the platelet activation potential of BMHVs was quantified by modeling a BMHV in the straight and anatomic aorta at implantation tilt angles 0°, 5°, 10°, and 20°. A fully implicit Arbitrary Lagrangian-Eulerian-based Fluid-Structure Interaction formulation was adopted with blood modeled as a multiphase, non-Newtonian fluid. Results showed that the intermittent regurgitation and consequently the platelet activation level increases with the increasing implantation tilt of BMHV. For the straight aorta, the leaflet of the 20° tilted BMHV underwent a rebound of approximately 20° after initially closing, whereas the leaflet of the 10°, 5°, and 0° tilted BMHVs underwent a rebound of 8.5°, 3°, and 0°, respectively. For the anatomic aorta, the leaflet of the 20° tilted BMHV underwent a rebound of approximately 24° after initially closing, whereas the leaflet of the 10°, 5°, and 0° tilted BMHVs underwent a rebound of 14°, 10°, and 7°, respectively. For all the implantation orientations of BMHVs, intermittent regurgitation and platelet activation were always higher in the anatomic aorta than in the straight aorta. The study concludes that the pivot axis of BMHV must be implanted parallel to the aortic root's curvature to minimize intermittent regurgitation and platelet activation.
    Matched MeSH terms: Prosthesis Design
  4. Wahab AH, Kadir MR, Harun MN, Kamarul T, Syahrom A
    Med Biol Eng Comput, 2017 Mar;55(3):439-447.
    PMID: 27255451 DOI: 10.1007/s11517-016-1525-6
    The present study was conducted to compare the stability of four commercially available implants by investigating the focal stress distributions and relative micromotion using finite element analysis. Variations in the numbers of pegs between the implant designs were tested. A load of 750 N was applied at three different glenoid positions (SA: superior-anterior; SP: superior-posterior; C: central) to mimic off-center and central loadings during activities of daily living. Focal stress distributions and relative micromotion were measured using Marc Mentat software. The results demonstrated that by increasing the number of pegs from two to five, the total focal stress volumes exceeding 5 MPa, reflecting the stress critical volume (SCV) as the threshold for occurrence of cement microfractures, decreased from 8.41 to 5.21 % in the SA position and from 9.59 to 6.69 % in the SP position. However, in the C position, this change in peg number increased the SCV from 1.37 to 5.86 %. Meanwhile, micromotion appeared to remain within 19-25 µm irrespective of the number of pegs used. In conclusion, four-peg glenoid implants provide the best configuration because they had lower SCV values compared with lesser-peg implants, preserved more bone stock, and reduced PMMA cement usage compared with five-peg implants.
    Matched MeSH terms: Prosthesis Design*
  5. Harwant S
    Med J Malaysia, 2004 Dec;59 Suppl F:2.
    PMID: 15941152
    Matched MeSH terms: Prosthesis Design
  6. B Jamayet N, J Abdullah Y, A Rajion Z, Husein A, K Alam M
    Bull. Tokyo Dent. Coll., 2017;58(2):117-124.
    PMID: 28724860 DOI: 10.2209/tdcpublication.2016-0021
    The wax sculpting of a maxillofacial prosthesis is challenging, time-consuming, and requires great skill. Rapid prototyping (RP) systems allow these hurdles to be overcome by enabling the creation of a customized 3D model of the desired prosthesis. Geomagic and Mimics are the most suitable software programs with which to design such prostheses. However, due to the high cost of these applications and the special training required to operate them, they are not widely used. Additionally, ill-fitting margins and other discrepancies in the final finished products of RP systems are also inevitable. Therefore, this process makes further treatment planning difficult for the maxillofacial prosthodontist. Here, we report the case of a 62-year-old woman who attended our clinic. Initially, she had presented with a right facial defect. This was later diagnosed as a squamous cell carcinoma and resected. The aim of this report is to describe a new technique for the 3D printing of facial prostheses which involves the combined use of open-source software, an RP system, and conventional methods of fabrication. The 3D design obtained was used to fabricate a maxillofacial prosthesis to restore the defect. The patient was happy with the esthetic outcome. This approach is relatively easy and cheap, does not require a high degree of non-medical training, and is beneficial in terms of clinical outcome.
    Matched MeSH terms: Prosthesis Design/methods
  7. Patil PG, Nimbalkar-Patil SP, Karandikar AB
    J Contemp Dent Pract, 2014 Jan 1;15(1):112-5.
    PMID: 24939276
    This case report demonstrates sequential periodontic, orthodontic and prosthodontic treatment modalities to save and restore deep horizontally fractured maxillary central incisor. The location of fracture was deep in the mucosa which reveals less than 2 mm of tooth structure to receive the crown. The procedures like surgical crown lengthening, endodontic post placement, orthodontic forced eruption, core build-up and metal-ceramic crown restoration were sequentially performed to conserve the fractured tooth. Forced eruption is preferred to surgical removal of supporting alveolar bone, since forced eruption preserves the biologic width, maintains esthetics, and at the same time exposes sound tooth structure for the placement of restorative margins.
    Matched MeSH terms: Dental Prosthesis Design
  8. Pan KL, Ong GB, Potukuchi AP
    Med J Malaysia, 2006 Dec;61 Suppl B:55-7.
    PMID: 17600994
    We report a case of an 11-year-old boy with osteosarcoma of the proximal humerus treated with wide excision and reconstruction with a cement spacer-prosthesis. After seven years of follow-up, the patient is now almost a young adult. We present his current physical and functional status, which seems to defray the initial doubts regarding long-term problems when we chose this method of reconstruction.
    Matched MeSH terms: Prosthesis Design
  9. Kamath SU, Agarwal S, Austine J
    Malays Orthop J, 2020 Nov;14(3):143-150.
    PMID: 33403075 DOI: 10.5704/MOJ.2011.022
    Introduction: With a higher proportion of young individuals undergoing uncemented hip arthroplasty, a close match in the dimension of the proximal femur and the implanted prosthesis is paramount. This is a study to gain insight into geographical variation in proximal femur morphology to determine the reference values to design uncemented femoral stems for a south Indian population, and also the effect of ageing and gender on the proximal femur morphology.

    Materials and Methods: The study comprised of two groups. For the first group, 50 unpaired dry femur bones were obtained from adult human cadavers; and the second group was a clinical group of 50 adult patients. Standardised radiographic techniques were used to measure the extra-cortical and intra-cortical morphometric parameters. Based on these, dimensionless ratios were calculated to express the shape of the proximal femur. The data were expressed in terms of mean and standard deviation and a comparison made with other studies.

    Results: A significant difference was noted across various population subsets within the Indian subcontinent and also in comparison to the Western population, suggestive of regional variation. The measurements made in cadaveric bone differed significantly from those in live patients, especially the femoral head diameter and extra-cortical and intra-cortical width. Femoral offset, head height and diameter were significantly less in females.

    Conclusion: The south Indian population needs customised implants with an increase in neck shaft angle and a decrease in intra-cortical and extra-cortical width for press fit in hip arthroplasty. The variation between the two sexes must also be accounted for during prosthesis design.

    Matched MeSH terms: Prosthesis Design
  10. Baharuddin MY, Salleh ShH, Zulkifly AH, Lee MH, Mohd Noor A
    Biomed Res Int, 2014;2014:692328.
    PMID: 25025068 DOI: 10.1155/2014/692328
    A morphology study was essential to the development of the cementless femoral stem because accurate dimensions for both the periosteal and endosteal canal ensure primary fixation stability for the stem, bone interface, and prevent stress shielding at the calcar region. This paper focused on a three-dimensional femoral model for Asian patients that applied preoperative planning and femoral stem design. We measured various femoral parameters such as the femoral head offset, collodiaphyseal angle, bowing angle, anteversion, and medullary canal diameters from the osteotomy level to 150 mm below the osteotomy level to determine the position of the isthmus. Other indices and ratios for the endosteal canal, metaphyseal, and flares were computed and examined. The results showed that Asian femurs are smaller than Western femurs, except in the metaphyseal region. The canal flare index (CFI) was poorly correlated (r < 0.50) to the metaphyseal canal flare index (MCFI), but correlated well (r = 0.66) with the corticomedullary index (CMI). The diversity of the femoral size, particularly in the metaphyseal region, allows for proper femoral stem design for Asian patients, improves osseointegration, and prolongs the life of the implant.
    Matched MeSH terms: Prosthesis Design/methods
  11. Yakub MA, Sivalingam S, Dillon J, Matsuhama M, Latiff HA, Ramli MF
    Ann Thorac Surg, 2015 Mar;99(3):884-90; discussion 890.
    PMID: 25579160 DOI: 10.1016/j.athoracsur.2014.09.016
    This study compares the midterm results of mitral valve repair using the biodegradable ring versus repair with non-ring annuloplasty techniques for congenital mitral valve disease in young children where it was not possible to use standard commercial rings.
    Matched MeSH terms: Prosthesis Design
  12. Asif S, Choon DS
    J Orthop Surg (Hong Kong), 2005 Dec;13(3):280-4.
    PMID: 16365492
    To evaluate the midterm results of 50 patients who underwent total knee replacement using Press Fit Condylar (PFC) Sigma system.
    Matched MeSH terms: Prosthesis Design
  13. Yong CK, Choon DS, Soon HC
    J Orthop Surg (Hong Kong), 2008 Aug;16(2):197-200.
    PMID: 18725672
    To present midterm results of Duracon total knee arthroplasty (TKA) performed between 1991 and 2001.
    Matched MeSH terms: Prosthesis Design
  14. Alam M, Choudhury IA, Bin Mamat A
    ScientificWorldJournal, 2014;2014:867869.
    PMID: 24892102 DOI: 10.1155/2014/867869
    Robotic technologies are being employed increasingly in the treatment of lower limb disabilities. Individuals suffering from stroke and other neurological disorders often experience inadequate dorsiflexion during swing phase of the gait cycle due to dorsiflexor muscle weakness. This type of pathological gait, mostly known as drop-foot gait, has two major complications, foot-slap during loading response and toe-drag during swing. Ankle foot orthotic (AFO) devices are mostly prescribed to resolve these complications. Existing AFOs are designed with or without articulated joint with various motion control elements like springs, dampers, four-bar mechanism, series elastic actuator, and so forth. This paper examines various AFO designs for drop-foot, discusses the mechanism, and identifies limitations and remaining design challenges. Along with two commercially available AFOs some designs possess promising prospective to be used as daily-wear device. However, the design and mechanism of AFO must ensure compactness, light weight, low noise, and high efficiency. These entailments present significant engineering challenges to develop a new design with wide consumer adoption.
    Matched MeSH terms: Prosthesis Design*
  15. Abdullah AM, Rahim TNAT, Hamad WNFW, Mohamad D, Akil HM, Rajion ZA
    Dent Mater, 2018 11;34(11):e309-e316.
    PMID: 30268678 DOI: 10.1016/j.dental.2018.09.006
    OBJECTIVE: To compare the mechanical and biological properties of newly developed hybrid ceramics filled and unfilled polyamide 12 (PA 12) for craniofacial reconstruction via a fused deposition modelling (FDM) framework.

    METHODS: 15wt% of zirconia (ZrO2) as well as 30, 35, and 40wt% of beta-tricalcium phosphate (β-TCP) were compounded with PA 12, followed by the fabrication of filament feedstocks using a single screw extruder. The fabricated filament feedstocks were used to print the impact specimens. The melt flow rate, tensile properties of fabricated filament feedstocks, and 3D printed impact properties of the specimens were assessed using melt flow indexer, universal testing machine, and Izod pendulum tester, respectively. The microstructure of selected filament feedstocks and broken impact specimens were analysed using a field emission scanning electron microscope and universal testing machine. Human periodontal ligament fibroblast cells (HPdLF) were used to evaluate the cytotoxicity of the materials by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid) (MTT) assay.

    RESULTS: Hybrid ceramics filled PA 12 indicated sufficient flowability for FDM 3D printing. The tensile strength of hybrid ceramics filled PA 12 filament feedstocks slightly reduced as compared to unfilled PA 12. However, the tensile modulus and impact strength of hybrid ceramics filled PA 12 increased by 8%-31% and 98%-181%, respectively. A significant increase was also detected in the cell viability of the developed composites at concentrations of 12.5, 25, 50 and 100mg/ml.

    SIGNIFICANCE: The newly developed hybrid ceramics filled PA 12 filament feedstock with improved properties is suitable for an FDM-based 3D printer, which enables the creation of patient-specific craniofacial implant at a lower cost to serve low-income patients.

    Matched MeSH terms: Prosthesis Design/methods*
  16. Ling HT, Kwan MK, Chua YP, Deepak AS, Ahmad TS
    Med J Malaysia, 2006 Dec;61 Suppl B:8-12.
    PMID: 17600986
    Treatment of radius or ulna nonunion requires both osteogenic environment and mechanical stability. We would like to report three radial and six ulnar diaphyseal nonunions treated with 3.5 mm locking compression plate (LCP) fixation. To assess the effectiveness of 3.5 mm LCP in treating diaphyseal nonunion of the forearm bones, we prospectively reviewed nine patients with the mean age of 33 years with diaphyseal nonunion of the radius or ulna. All patients were treated with 3.5 mm LCP. Bone grafting was only performed for atrophic nonunion. Surgical and functional outcome were evaluated. There were three atrophic nonunion of the radius, four atrophic nonunion of the ulna and two hypertrophic nonunion of the ulna. All nonunion united successfully with satisfactory functional outcome. 3.5 mm LCP is effective in the treatment of nonunion of ulna or radius.
    Matched MeSH terms: Prosthesis Design
  17. Abd Razak NA, Abu Osman NA, Wan Abas WA
    Disabil Rehabil Assist Technol, 2013 May;8(3):255-60.
    PMID: 22830946 DOI: 10.3109/17483107.2012.704654
    This study examined the kinematic differences between a body-powered prosthesis and a biomechatronics prosthesis as a transradial amputee performed activities that involve flexion/extension and supination/pronation of the wrist.
    Matched MeSH terms: Prosthesis Design*
  18. Ramlee MH, Ammarullah MI, Mohd Sukri NS, Faidzul Hassan NS, Baharuddin MH, Abdul Kadir MR
    Sci Rep, 2024 Mar 21;14(1):6842.
    PMID: 38514731 DOI: 10.1038/s41598-024-57454-8
    Previous research has primarily focused on pre-processing parameters such as design, material selection, and printing techniques to improve the strength of 3D-printed prosthetic leg sockets. However, these methods fail to address the major challenges that arise post-printing, namely failures at the distal end of the socket and susceptibility to shear failure. Addressing this gap, the study aims to enhance the mechanical properties of 3D-printed prosthetic leg sockets through post-processing techniques. Fifteen PLA + prosthetic leg sockets are fabricated and reinforced with four materials: carbon fiber, carbon-Kevlar fiber, fiberglass, and cement. Mechanical and microstructural properties of the sockets are evaluated through axial compression testing and scanning electron microscopy (SEM). Results highlight superior attributes of cement-reinforced sockets, exhibiting significantly higher yield strength (up to 89.57% more than counterparts) and higher Young's modulus (up to 76.15% greater). SEM reveals correlations between microstructural properties and socket strength. These findings deepen the comprehension of 3D-printed prosthetic leg socket post-processing, presenting optimization prospects. Future research can focus on refining fabrication techniques, exploring alternative reinforcement materials, and investigating the long-term durability and functionality of post-processed 3D-printed prosthetic leg sockets.
    Matched MeSH terms: Prosthesis Design
  19. Kaur K
    BMJ Case Rep, 2023 Feb 14;16(2).
    PMID: 36787931 DOI: 10.1136/bcr-2022-251154
    Long-term prognosis of complicated traumatic injuries depends on precise treatment planning. Establishing a balance between a patient's age, prognosis, financial hurdles, and treatment needs is challenging. This case highlights the need for meticulous and realistic treatment planning to achieve long-term favourable outcomes in traumatic injuries in young adults.A young child sustained a traumatic injury that caused avulsion of #21 and intrusion along with palatal luxation of #11. The child reported to the dental clinic with intraoral swelling and pain a week after the injury. Socket preservation was done so that uniform bone contour could be achieved for implant placement at a later stage. We modified a 'Hollywood appliance' as an interim prosthesis to ensure that the ridge was not immediately loaded where socket preservation was done.After a follow-up of 3 years, there is significant bone deposition and the child is satisfied with aesthetics.
    Matched MeSH terms: Prosthesis Design
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links