Solid waste collection and disposal are among the most vital services provided to about 700 770 residents of the city of Erbil in northern Iraq. As such, proper waste management systems that consider both the quantity and composition of domestic solid waste are strongly required to address the increasing amount of solid waste. Unfortunately, these essential data are not easily available. The present study sought to gather data on the quantity and composition of domestic solid waste collected from different quarters in Erbil, and the feasibility of recycling these wastes. The solid waste generation rate (GR), uncompacted density, and weight percentages of combustible and incombustible materials were determined based on the collected materials (i.e., food, plastic, paper, metal, glass and cloth). The results show that the average GR and uncompacted density were 0.654 kg capita(-1) day(-1) and 175.72 kg m(-3), respectively. The weight percentages of food, plastic, paper, metal, glass, and cloth as components of domestic solid waste were 79.34, 6.28, 5.9, 3.6, 3.42 and 1.45%, respectively.
Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.
The disposal of industrial paper mill sludge waste is a big issue and has a great importance all over the world. A study was conducted to determine the chemical properties of recycled paper mill sludge (RPMS) and assess its possibilities for land application. RPMS samples were collected from six different paper mills in Malaysia and analyzed for physical and chemical properties, heavy metals, polycyclic aromatic hydrocarbons, (13)C-NMR spectra and for the presence of dioxins/furans. The RPMS was dewatered, sticky with a strong odour, an average moisture of 65.08%, pH 7.09, cation exchange capacity (CEC) 14.43 cmol (+) kg(-1), N 1.45, P 0.18, K 0.12, Ca 0.82, Mg 0.73, Na 0.76 and Al, 1.38%. The polycyclic aromatic hydrocarbons (PAHs) and heavy metals levels were below the standard Class 2 limits. The dioxin and furan were in below the standard concentration of Class 1. The most prominent peak in the (13)C-NMR spectra of RPMS was centered at 31 ppm, proving the presence of methylene (-CH2) groups in long aliphatic chains, with lipids and proteins. The signal at 89 ppm and highly shielded shoulder at 83 ppm were due to presence of cellulose carbon C-4, and the peak at 63 and 65 ppm was due to the cellulose carbon spectrum. The RPMS therefore contains significant amount of nutrients with safe levels of heavy metals and PAHs for environment and can be used as a fertilizer and soil amendment for land application.
The performance of modified anaerobic inclining-baffled reactor (MAI-BR) treating recycled paper mill effluent (RPME) was investigated by varying the influent chemical oxygen demand (CODin) concentration from 1000 to 4000 mg/L, and the hydraulic retention time (HRT) from 3 to 1 day, corresponding to an organic loading rate increase from 0.33 to 4 g COD/L day. Throughout 126 days of operation, a maximum removal efficiency of up to 96% of chemical oxygen demand (COD) and 99% of biological oxygen demand, methane (CH4) yield of 0.259 L CH4/g COD, and a stable effluent pH of 6.5 were achieved. Furthermore, the compartmental performance showed that most of the organic substrates were removed in the initial two compartments, resulting in low pH and alkalinity levels and a high concentration of volatile fatty acids. Overall, the results showed that the MAI-BR successfully treated RPME, and the performance was affected by the variation of HRT more than the CODin.
In order to address the issues of climate change through wise management of resources and environmental conservation, this study examined the intention and behavior towards green consumption among low-income households. This study was a cross-sectional that relied on 380 low-income household respondents who lived in coastal areas of Peninsular Malaysia. The findings revealed a positive effect of eco-literacy and self-efficacy on attitude towards green products. Subsequently, the findings also ascertained a positive effect of attitude and perceived behavioral control on intention and consumption of green products. In addition, both scholars and policymakers can rely on these findings to increase the intention and behavior towards the consumption of green products in order to reduce the environmental vulnerability to the coastal communities. Therefore, responsible organizations should implement programs and policies that minimize the adverse effects of climate change through resource management and environmental conservation by promoting the use of green products among Malaysians.
Used baby diaper consists of a combination of decomposable cellulose, non-biodegradable plastic materials (e.g. polyolefins) and super-absorbent polymer materials, thus making it difficult to be sorted and separated for recycling. Microwave pyrolysis was examined for its potential as an approach to transform used baby diapers into value-added products. Influence of the key operating parameters comprising process temperature and microwave power were investigated. The pyrolysis showed a rapid heating process (up to 43 °C/min of heating rate) and quick reaction time (20-40 min) in valorizing the used diapers to generate pyrolysis products comprising up to 43 wt% production of liquid oil, 29 wt% gases and 28 wt% char product. Microwave power and operating temperature were observed to have impacts on the heating rate, process time, production and characteristics of the liquid oil and solid char. The liquid oil contained alkanes, alkenes and esters that can potentially be used as chemical additives, cosmetic products and fuel. The solid char contained high carbon, low nitrogen and free of sulphur, thus showing potential for use as adsorbents and soil additives. These observations demonstrate that microwave pyrolysis has great prospect in transforming used baby diaper into liquid oil and char products that can be utilised in several applications.
As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables.
The rapid increase in urbanization has given rise to the need of proper waste management. Within municipal waste, the plastic waste is a growing concern which is causing severe harm to our ecosystem. If ignored, this problem will have harmful effects on both human and wildlife. Therefore, this study aims to find out the factors that influence the recycling behavior patterns of consumers regarding plastic waste. The variables from the theory of planned behavior were adopted to study the behavior of consumers toward recycling plastic waste. The data was collected from 243 residents of Karachi-metropolitan city of Pakistan. The partial least square-structural equation modelling was applied to analyze the data. The findings of the current study reveal that different consumers' attributes and attitudes trigger different types of recycling behavior when it comes to waste disposal. Pressure from family and friends and perceived behavioral control trigger the behavior of reselling the waste plastic products while consumer's awareness of consequences and personal attitude toward proper waste disposal leads to reuse or donating that product to someone who can use that plastic product. The understanding of these consumer attributes may help to shape the behavioral outcomes in order to manage waste disposal. This study will be beneficial for business managers looking to improve reverse logistics as well as government/municipal policy makers and academics/researchers who are interested in a solution-oriented study.
A bulk of used paper supplied to recycling industry may contain water in their internal voids. This is because the price of the used paper is currently based on their weight and it has a huge potential of suppliers to add with water in order to increase the price. Currently used methods for detecting moisture content in a paper are restricted to a sheet of paper only. This paper presents a non-intrusive method for quick and in-situ measurement of water content in a bulk of used paper. The proposed method extends the capability of common paper moisture gauge, by using a neutron device. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector are used for water measurement. It theoretically indicates that the slow neutron counts can be correlated to the hydrogen or water level in a paper. The method has the potential of being used by the paper-recycling industry for rapid and non-destructive measurement of water in a bulk of used paper.
Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making. A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management.
Energy consumption is an important part of life today because without the power a work cannot be done. The energy used today will be lost or waste without renewable energy or power recycle back. In reality, energy use has always had a noticeable impact on the environment. Overconsumption of energy is the main trigger for the global warming that is now threatening to cause devastation in many areas of the world. Each year, electricity consumption in Malaysia is always an increase. This can contribute to the occurrence of global warming. This project will be designed for renewable energy or recycle power to avoid waste of energy from lost. Also, this project consider regarding the Green Technology without polluting the environment. The objective is to develop a prototype or hardware that aims to renewable energy using the 12V DC Motor as a generator which is use rear shaft of table fan as a medium to drive the 12V DC Motor and also to analyze the power consumption of table fan before and after install with hardware. The methods used to design the connector and DC motor holder is using a solidwork software, then construct the circuit simulation using a proteus software and also use a microcontroller PIC16F877A as a controller. The result obtained from the testing and experiments by integrating the hardware part, electrical part and software part. Finally, with the development of a power recycling prototype for renewable energy using DC Motor application, the wasted energy can be reused from conversion to other energy and energy can be used as renewable energy.
Photocatalytic fuel cell (PFC) is considered as a sustainable green technology which could degrade organic pollutant and generate electricity simultaneously. A synergistic double-sided ZnO/BaTiO3 loaded carbon plate heterojunction photoanode was fabricated in different ratios by using simple ultrasonication and mixed-annealed method. The double-sided design of photoanode allowed the lights irradiated at both sides of the photoanode. The ferroelectricity fabricated photoanode was applied in a membraneless PFC with platinum-loaded carbon as the cathode. Results revealed that the photoanode with 1:1 ratio of BaTiO3 and ZnO exhibited a superior photocatalytic activity among all the photoanodes prepared in this study. The heterojunction of this photoanode was able to achieve up to a removal efficiency of 93.67% with a maximum power density of 0.5284 μW cm-2 in 10 mg L-1 of Reactive Red 120 (RR120) without any supporting electrolyte. This photoanode was able to maintain at high performance after recycling 3 times. Overloading of ZnO above 50% on BaTiO3 could lead to deterioration of the performance of PFC due to the charge defects and light trapping ability. The interactions, interesting polarizations of the photocatalysts and proposed mechanism of the n-n type heterojunction in the photoanode of ZnO/BaTiO3 was also discussed.
In this study a GIS model was developed and spatial analytical techniques performed to identify and select a suitable location for a waste transfer station in the sprawling suburban town of Petaling Jaya. The lack of a transfer station in urban centres of Malaysia has caused many problems and affects the efficiency of waste collection and disposal. With diminishing space for landfills and the increasing cost of solid waste management, the need for urban solid-waste recycling has become very important. However, finding a place for waste to be efficiently sorted before unwanted waste can be carried to disposal landfills has social and physical constraints. This study applies GIS techniques and analysis for site selection and identifies an acceptable area. In the model, environmental, physical and social constraints were taken into account, resulting in the selection of a potential area that is acceptable to the residents of the area because it is out of range of causing public nuisance and within minimum travelling distance for collection vehicles. The results show that the potential location for the transfer station should be in proximity of the industrial area of Petaling Jaya, allowing for the possible sale of recyclable materials to local industries. The location is also sited near a major highway to allow quick transportation of the rest of the unwanted waste to the landfill.
Paper recycling plants usually buy their raw material from suppliers. More than often, bulk used paper supplied to the plant contains some significant quantity of water in its internal voids. It may be included intentionally or unintentionally. The price of used paper depends on its weight, thus adding water will help to increase weight and consequently increase the price. In this way, plant owner who purchase the used paper suffers a significant of financial lost. The objectives of our experiment are to establish a calibration curve that correlate between the amount of neutron backscattered and water content, and finally to develop a correction factor that need to be introduced to the measured values of water content. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector were used for water measurement. The experiments were carried out by measuring neutron backscattering from used paper that has been added with different amount of water. As a result, a neutron calibration curve that provides a correlation between neutron backscattering and water content was established.
In this paper, optimum routing was developed based on the travel salesman method and integrated in ArcInfo GIS using linear programming. The results of the optimized travel distances and times for residential waste collection and routing to disposal site were used to calculate the number and type of required track collection, labour requirement, costing of waste collection and to determine the overall solid waste management efficiency through waste management operation research methods. The objective of the study was to optimize residential collection and hauling to disposal site through operation cost minimization for Petaling Jaya Municipality in the state of Selangor, Malaysia. The study determined that with optimized routes and recycling possibilities, the total cost of waste collections could be reduced from RM90,372 to RM20,967, with a reduction of 76.8%. It was also revealed that optimum routes might not necessarily be the shortest distance from point A to point B as travel time maybe high on short distances due to traffic congestion and the presence of many traffic lights. Techniques and methods developed using general GIS have proven effective in route optimization and allowed management of data to suit local conditions and limitations of waste management for the studied area. Thus, scenarios of travel distances, time and waste quantity value generated from the GIS enabled appropriate determination of the number of waste trucks and labour requirements for the operation and the overall calculation of costs of waste management based on the operation research methods used in the study.
This paper details a study conducted to evaluate the performance of cold in-place recycling (CIPR) using polymer modified asphalt emulsion (PMAE). The asphalt emulsion was modified using natural rubber latex (NRL). Four proportions of reclaimed asphalt pavement (RAP) which are 0%, 25%, 50% and 75% were mixed with natural aggregates and modified asphalt emulsion using natural rubber latex (NRL). The results showed that the optimum modified asphalt emulsion for each proportion of RAP decreased due to the increase in RAP content. Results obtained from Indirect Tensile Strength (ITS) and Uniaxial Compressive Strength (UCS) test for the mixes complied with the requirements of the Road Engineering Association of Malaysia (REAM) specifications. The unsoaked and soaked ITS values obtained were 0.2 MPa and 0.15 MPa respectively, and the minimum compressive strength of CIPR mix obtained was 0.7 MPa. Based on the evaluation of performance for the four RAP proportions, it was determined that 50% of RAP gave the best combination of the CIPR mixture.
Kenaf fibre is one of the natural fibers that has received much attention of many researchers because of its good properties and flexible use. Kenaf fibre composites have been proposed as interior building materials. In this study, the recycling effect on the kenaf PVC wall panel is focused. The main objective of this study is to determine the mechanical properties of different types of kenaf PVC wall panels. The samples were formulated based on the first and third recycling process. The specimens were subjected to several types of tests, namely, tensile, izod impact, flexural and hardness based on ASTM D3039, ASTM D256, ASTM D7264 and ASTM D785, respectively. The results indicate that the mechanical properties of the third recycled kenaf PVC wall panel product is better than the virgin and first recycled specimen. This shows that the recycling process enhances the mechanical properties of the product. On the other hand, the hardness of the specimen decreases after first recycling due to the reheating effect.
E-waste, or waste generated from electrical and electronic equipment, is considered as one of the fastest-growing waste categories, growing at a rate of 3-5% per year in the world. In 2016, 44.7 million tonnes of e-waste were generated in the world, which is equivalent to 6.1 kg for each person. E-waste is classified as a hazardous waste, but unlike other categories, e-waste also has significant potential for value recovery. As a result it is traded significantly between the developed and developing world, both as waste for disposal and as a resource for metal recovery. Only 20% of global e-waste in 2016 was properly recycled or disposed of, with the fate of the remaining 80% undocumented - likely to be dumped, traded or recycled under inferior conditions. This review paper provides an overview of the global e-waste resource and identifies the major challenges in the sector in terms of generation, global trade and waste management strategies. It lists the specific hazards associated with this type of waste that need to be taken into account in its management and includes a detailed overview of technologies employed or proposed for the recovery of value from e-waste. On the basis of this overview the paper identifies future directions for effective e-waste processing towards sustainable waste/resource management. It becomes clear that there is a strong divide between developed and developing countries with regard to this sector. While value recovery is practiced in centralised facilities employing advanced technologies in a highly regulated industrial environment in the developed world, in the developing world such recovery is practiced in a largely unregulated artisanal industry employing simplistic, labour intensive and environmentally hazardous approaches. Thus value is generated safely in the hi-tech environment of the developed world, whereas environmental burdens associated with exported waste and residual waste from simplistic processing remain largely in developing countries. It is argued that given the breadth of available technologies, a more systematic evaluation of the entire e-waste value chain needs to be conducted with a view to establishing integrated management of this resource (in terms of well-regulated value recovery and final residue disposal) at the appropriately local rather than global scale.
Each year Bangladesh produces around 400,000 metric tonnes of e-waste. E-waste accumulation is expected to increase by 20% annually. In order to facilitate e-waste recycling, it is crucial to identify the factors. In this study, building on the stimulus-organism-response framework, we develop a research model to explore the effect of information publicity, ascription of responsibility and convenience of recycling on the recycling attitude, subjective norm, personal norm and perceived behaviour control which lead to recycling intention. Data were gathered from 127 small and medium electronics store managers. The structural equation modelling technique was used to test the paths. The result suggests a significant influence of the element of stimulus (S) on the element of organism (O). The relationship between the element of organism (O) and the element of response (R) is partial. This paper contributes to the body of work dedicated to helping us better understand the recycling behaviour from the stimulus-organism-response perspective. From the viewpoint of practice, this research sheds light on some of the challenges that the implementer might face when making strategy and policy for e-waste management in Bangladesh.
The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.