Displaying publications 61 - 80 of 105 in total

Abstract:
Sort:
  1. Md Roduan MR, Abd Hamid R, Mohtarrudin N
    BMC Complement Altern Med, 2019 Sep 03;19(1):238.
    PMID: 31481122 DOI: 10.1186/s12906-019-2650-1
    BACKGROUND: Annonacin, an annonaceous acetogenin isolated from Annona muricata has been reported to be strongly cytotoxic against various cell lines, in vitro. Nevertheless, its effect against in vivo tumor promoting activity has not been reported yet. Therefore, this study was aimed to investigate antitumor-promoting activity of annonacin via in vivo two-stage mouse skin tumorigenesis model and its molecular pathways involved.

    METHODS: Mice were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μL) followed by, in subsequent week, repeated promotion (twice weekly; 22 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μL). Annonacin (85 nM) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application for 22 weeks. Upon termination, histopathological examination of skin, liver and kidney as well as genes and proteins expression analysis were conducted to elucidate the potential mechanism of annonacin.

    RESULTS: With comparison to the carcinogen control, Annonacin significantly increased the tumor latency period and reduced the tumor incidence, tumor burden and tumor volume, respectively. In addition, it also suppressed tumorigenesis manifested by significant reduction of hyperkeratosis, dermal papillae and number of keratin pearls on skin tissues. Annonacin also appeared to be non-toxic to liver and kidney. Significant modulation of both AKT, ERK, mTOR, p38, PTEN and Src genes and proteins were also observed in annonacin-targeted signaling pathway(s) against tumorigenesis.

    CONCLUSIONS: Collectively, results of this study indicate that annonacin is a potential therapeutic compound targeting tumor promoting stage in skin tumorigenesis by modulating multiple gene and protein in cancer signaling pathways without apparent toxicity.

    Matched MeSH terms: Skin/pathology
  2. Aziz J, Shezali H, Radzi Z, Yahya NA, Abu Kassim NH, Czernuszka J, et al.
    Skin Pharmacol Physiol, 2016;29(4):190-203.
    PMID: 27434176 DOI: 10.1159/000447017
    Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks.
    Matched MeSH terms: Skin/pathology
  3. Chin CY, Ng PY, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):453-468.
    PMID: 29560587 DOI: 10.1007/s13346-018-0510-z
    Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
    Matched MeSH terms: Skin/pathology
  4. Yusof MI, Al-Astani AD, Jaafar H, Rashid FA
    Singapore Med J, 2008 Feb;49(2):100-4.
    PMID: 18301834
    INTRODUCTION: This study was designed to evaluate the histopathological features of skin microvasculature in patients with a diabetic foot, specifically the number of blood vessels, number of endothelial cells and endothelial thickness.
    METHODS: This study involved 41 diabetic foot patients admitted to Hospital Universiti Sains Malaysia for surgical management of foot problems. Skin biopsies were taken for histological evaluation following surgical procedures, such as wound debridement or local foot amputation. The skin microvasculature features examined were the number of blood vessels, the endothelial thickness of the vessels and the cross-sectional endothelial cell count. The findings were compared with the similar parameters of non-diabetic patients (control) and analysed.
    RESULTS: The mean blood vessel count (BVC), endothelial cell thickness (ECT) and endothelial cell count (ECC) for the diabetic group were 12.56 +/- 2.77, 4.81 +/- 1.5 micrometres and 7.07 +/- 1.88, respectively. The mean BVC, ECT and ECC for the non-diabetic control group were 5.25 +/- 1.98, 1.9 +/- 0.55 micrometres and 4.11 +/- 1.17, respectively. The mean BVC, ECT and ECC for the diabetic group were significantly higher than those for the non-diabetic control group.
    CONCLUSION: The increased number of blood vessels to the skin and their endothelial cell number and thickness may be the contributing factors for problems related to the diabetic foot, such as tendency for skin ulceration, infection and poor wound-healing in these patients. These may also contribute to secondary changes of diabetic foot lesions, indicating failure of adequate vascularisation of the foot.
    Matched MeSH terms: Skin/pathology
  5. George R, Kassim MS, Wah LT
    Med J Malaysia, 1974 Sep;29(1):11-6.
    PMID: 4282623
    Matched MeSH terms: Skin/pathology
  6. Foong HB, Ibrahimi OA, Elpern DJ, Tyring S, Rady P, Carlson JA
    Int J Dermatol, 2008 May;47(5):476-8.
    PMID: 18412865 DOI: 10.1111/j.1365-4632.2008.03559.x
    Matched MeSH terms: Skin/pathology*
  7. Khaw GE
    Med J Malaysia, 1998 Mar;53(1):114-6.
    PMID: 10968151
    Neural leprosy is rare. This is a report of a 63-year-old Indian man who had long standing multiple peripheral neuropathy. The slit skin smear for acid-fast bacilli of Mycobacterium leprae was positive. The skin and nerve biopsies were normal. He was treated with rifampicin, dapsone and clofazimine.
    Matched MeSH terms: Skin/pathology
  8. Mohamed M, Gardeitchik T, Balasubramaniam S, Guerrero-Castillo S, Dalloyaux D, van Kraaij S, et al.
    J Inherit Metab Dis, 2020 11;43(6):1382-1391.
    PMID: 32418222 DOI: 10.1002/jimd.12255
    Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalised connective tissue ageing, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4-kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4-phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl-chain pools of PI4P and PI(4,5)P2 were decreased. Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4-kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3 . Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature ageing and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.
    Matched MeSH terms: Skin/pathology*
  9. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Skin/pathology*
  10. Malik AS, Humayun J, Kamel N, Yap FB
    Skin Res Technol, 2014 Aug;20(3):322-31.
    PMID: 24329769 DOI: 10.1111/srt.12122
    BACKGROUND: More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study.
    OBJECTIVES: There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions.
    METHODS: For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions.
    RESULTS: Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods.
    CONCLUSION: This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions.
    KEYWORDS: acne grading; acne lesions; acne vulgaris; enhancement; segmentation
    Matched MeSH terms: Skin/pathology*
  11. Ahmad Fadzil MH, Ihtatho D, Mohd Affandi A, Hussein SH
    J Med Eng Technol, 2009;33(7):516-24.
    PMID: 19639508 DOI: 10.1080/07434610902744074
    Skin colour is vital information in dermatological diagnosis as it reflects the pathological condition beneath the skin. It is commonly used to indicate the extent of diseases such as psoriasis, which is indicated by the appearance of red plaques. Although there is no cure for psoriasis, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, the current gold standard method, PASI (Psoriasis Area and Severity Index), is used to determine severity of psoriasis lesion. Erythema (redness) is one parameter in PASI and this condition is assessed visually, thus leading to subjective and inconsistent results. Current methods or instruments that assess erythema have limitations, such as being able to measure erythema well for low pigmented skin (fair skin) but not for highly pigmented skin (dark skin) or vice versa. In this work, we proposed an objective assessment of psoriasis erythema for PASI scoring for different (low to highly pigmented) skin types. The colour of psoriasis lesions are initially obtained by using a chromameter giving the values L*, a*, and b* of CIELAB colour space. The L* value is used to classify skin into three categories: low, medium and highly pigmented skin. The lightness difference (DeltaL*), hue difference (Deltah(ab)), chroma (DeltaC*(ab)) between lesions and the surrounding normal skin are calculated and analysed. It is found that the erythema score of a lesion can be distinguished by their Deltah(ab) value within a particular skin type group. References of lesion with different scores are obtained from the selected lesions by two dermatologists. Results based on 38 lesions from 22 patients with various level of skin pigmentation show that PASI erythema score for different skin types i.e. low (fair skin) to highly pigmented (dark skin) skin types can be determined objectively and consistent with dermatology scoring.
    Matched MeSH terms: Skin/pathology
  12. Wahiduzzaman M, Pubalan M
    Dermatol. Online J., 2008;14(12):14.
    PMID: 19265627
    Imatinib mesylate--Gleevec (US), Glivec (worldwide), STI571--is an oral cancer drug that selectively inhibits several protein tyrosine kinases associated with human malignancy. The drug is used for the treatment of chronic myeloid leukemia, malignant gastrointestinal stromal tumors, and some other conditions. Treatment with imatinib is generally well tolerated but not without the risk of adverse effects. The risk of severe adverse events is low. Cutaneous side effects of this drug are common but muco-cutaneous lichenoid eruption with nail changes is very rare. We report a case of lichenoid eruption during imatinib therapy involving the skin, mucous membranes, and nails that cleared in spite of ongoing imatinib therapy.
    Matched MeSH terms: Skin/pathology*
  13. Reed WM, Schrader DL
    Poult Sci, 1989 May;68(5):631-8.
    PMID: 2547209
    An avian pox virus was isolated from cutaneous proliferative lesions removed from greater hill mynahs (Gracula religiosa) imported from Malaysia. Cutaneous inoculation of specific pathogen-free chickens and bobwhite quail with the mynah pox virus resulted in severe proliferative cutaneous lesions similar to those seen in the naturally infected mynah birds. Microscopically, the reaction in the chickens and quail at sites of virus inoculation was characterized by marked epithelial hyperplasia with ballooning degeneration and formation of cytoplasmic inclusion bodies. Inoculation of conjunctival and oral mucosae of chickens by applying pox virus with a cotton swab did not result in gross or microscopic lesions. In cross-protection studies, chickens and bobwhite quail immunized with either quail, fowl, pigeon, turkey, or psittacine pox vaccines were not protected from challenge with mynah pox virus. Following vaccination of quail and chickens with mynah pox virus vaccine, there was no resistance to challenge by quail, fowl, pigeon, turkey, or psittacine pox viruses. Significant protection against development of lesions following inoculation with mynah pox virus was attained only when the homologous virus was used as a vaccine.
    Matched MeSH terms: Skin/pathology
  14. Lai HY, Lim YY, Kim KH
    BMC Complement Altern Med, 2011 Aug 12;11:62.
    PMID: 21835039 DOI: 10.1186/1472-6882-11-62
    BACKGROUND: Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally to treat wounds, boils, blisters or abscesses and sores, stomach pain and urinary bladder complaints. The aim of the study was to validate the ethnotherapeutic claim and to evaluate the effects of B. orientale water extract on wound healing activity.

    METHODS: Water extract of B. orientale was used. Excision wound healing activity was examined on Sprague-Dawley rats, dressed with 1% and 2% of the water extract. Control groups were dressed with the base cream (vehicle group, negative control) and 10% povidone-iodine (positive control) respectively. Healing was assessed based on contraction of wound size, mean epithelisation time, hydroxyproline content and histopathological examinations. Statistical analyses were performed using one way ANOVA followed by Tukey HSD test.

    RESULTS: Wound healing study revealed significant reduction in wound size and mean epithelisation time, and higher collagen synthesis in the 2% extract-treated group compared to the vehicle group. These findings were supported by histolopathological examinations of healed wound sections which showed greater tissue regeneration, more fibroblasts and angiogenesis in the 2% extract-treated group.

    CONCLUSIONS: The ethnotherapeutic use of this fern is validated. The water extract of B. orientale is a potential candidate for the treatment of dermal wounds. Synergistic effects of both strong antioxidant and antibacterial activities in the extract are deduced to have accelerated the wound repair at the proliferative phase of the healing process.

    Matched MeSH terms: Skin/pathology
  15. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Skin/pathology
  16. Chwen CC
    J Fam Pract, 2014 Nov;63(11):677-9.
    PMID: 25362492
    The fact that this patient's rash was limited to his chest provided an important diagnostic clue.
    Matched MeSH terms: Skin/pathology
  17. Mazlyzam AL, Aminuddin BS, Lokman BS, Isa MR, Fuzina H, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:39-40.
    PMID: 15468808
    Our objective is to determine the quality of tissue engineered human skin via immunostaining, RT-PCR and electron microscopy (SEM and TEM). Culture-expanded human keratinocytes and fibroblasts were used to construct bilayer tissue-engineered skin. The in vitro skin construct was cultured for 5 days and implanted on the dorsum of athymic mice for 30 days. Immunostaining of the in vivo skin construct appeared positive for monoclonal mouse anti-human cytokeratin, anti-human involucrin and anti-human collagen type I. RT-PCR analysis revealed loss of the expression for keratin type 1, 10 and 5 and re-expression of keratin type 14, the marker for basal keratinocytes cells in normal skin. SEM showed fibroblasts proliferating in the 5 days in vitro skin. TEM of the in vivo skin construct showed an active fibrocyte cell secreting dense collagen fibrils. We have successfully constructed bilayer tissue engineered human skin that has similar features to normal human skin.
    Matched MeSH terms: Skin/pathology
  18. Wong KT, Shamsol S
    J Cutan Pathol, 1999 Jan;26(1):13-6.
    PMID: 10189239
    The association of mast cells with typical lesions of Kimura's disease was investigated by quantitative methods after immunohistochemical staining for Factor VIII-related antigen and counterstaining with toluidine blue. Formalin-fixed, paraffin-embedded, tissue sections from 9 confirmed cases of Kimura's disease were examined after staining to estimate mast cell and blood vessel densities by counting 100 random fields under oil immersion. There was a statistically significant increase of both mast cells and blood vessels in Kimura's disease (p<0.01) compared with normal skin and reactive lymph node controls. However, as far as the individual Kimura's disease lesion is concerned, there was generally no correlation between areas with mast cell increase and the degree of vascularity. Moreover, when lesions of less than 1 year's duration were compared with older lesions, there appeared to be a relative decrease in mast cells and a concomitant increase in vascularity in the latter. These results confirmed that mast cells are associated with Kimura's disease, and suggest that they may be involved in its early pathogenesis, although its possible role in angiogenesis may not be direct.
    Matched MeSH terms: Skin/pathology
  19. Mh Busra F, Rajab NF, Tabata Y, Saim AB, B H Idrus R, Chowdhury SR
    J Tissue Eng Regen Med, 2019 05;13(5):874-891.
    PMID: 30811090 DOI: 10.1002/term.2842
    The full-thickness skin wound is a common skin complication affecting millions of people worldwide. Delayed treatment of this condition causes the loss of skin function and integrity that could lead to the development of chronic wounds or even death. This study was aimed to develop a rapid wound treatment modality using ovine tendon collagen type I (OTC-I) bio-scaffold with or without noncultured skin cells. Genipin (GNP) and carbodiimide (EDC) were used to cross-link OTC-I scaffold to improve the mechanical strength of the bio-scaffold. The physicochemical, biomechanical, biodegradation, biocompatibility, and immunogenicity properties of OTC-I scaffolds were investigated. The efficacy of this treatment approach was evaluated in an in vivo skin wound model. The results demonstrated that GNP cross-linked OTC-I scaffold (OTC-I_GNP) had better physicochemical and mechanical properties compared with EDC cross-linked OTC-I scaffold (OTC-I_EDC) and noncross-link OTC-I scaffold (OTC-I_NC). OTC-I_GNP and OTC-I_NC demonstrated no toxic effect on cells as it promoted higher cell attachment and proliferation of both primary human epidermal keratinocytes and human dermal fibroblasts compared with OTC-I_EDC. Both OTC-I_GNP and OTC-I_NC exhibited spontaneous formation of bilayer structure in vitro. Immunogenic evaluation of OTC-I scaffolds, in vitro and in vivo, revealed no sign of immune response. Finally, implantation of OTC-I_NC and OTC-I_GNP scaffolds with noncultured skin cells demonstrated enhanced healing with superior skin maturity and microstructure features, resembling native skin in contrast to other treatment (without noncultured skin cells) and control group. The findings of this study, therefore, suggested that both OTC-I scaffolds with noncultured skin cells could be promising for the rapid treatment of full-thickness skin wound.
    Matched MeSH terms: Skin/pathology
  20. Ch'ng CC
    Med J Malaysia, 2024 Mar;79(2):203-205.
    PMID: 38553927
    A balanced and diverse skin microbiome is pivotal for healthy skin. Dysregulation of the skin microbiome could disrupt the skin barrier function and result in the development of atopic dermatitis (AD), a common chronic and relapsing inflammatory skin disorder. Given the role that the skin microbiome plays in the initiation and maintenance of AD, maintaining a healthy skin microbiome is crucial for effective disease management. Specifically, current guidelines recommend emollients as the treatment mainstay in maintaining a functional skin barrier across disease severity. Emollient 'plus' or therapeutic moisturisers have recently emerged as the next-generation emollients that specifically aim to rebalance the skin microbiome and subsequently improve AD lesions. This article provides a quick overview of an emollient 'plus' or therapeutic moisturiser, discussing the clinical efficacy and tolerability of Lipikar Baume AP+M as a companion in AD management.
    Matched MeSH terms: Skin/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links