Displaying publications 61 - 80 of 561 in total

Abstract:
Sort:
  1. Apanaskevich DA, Apanaskevich MA, Nooma W, Ahantarig A, Trinachartvanit W
    Syst Parasitol, 2021 06;98(3):207-230.
    PMID: 33893604 DOI: 10.1007/s11230-021-09972-6
    Re-examination of the holotype of Dermacentor atrosignatus Neumann, 1906 (Acari: Ixodidae) stored in the Natural History Museum (London, UK) revealed that this taxon is identical with D. auratus Supino, 1897 and should be treated as a junior synonym of the latter species. A correct name for the distinct species previously identified as D. atrosignatus Neumann, 1906 sensu Wassef & Hoogstraal, 1984 should be D. tricuspis (Schulze, 1933) n. comb., n. stat. Adults of D. tricuspis are redescribed here. Re-examination of extensive holdings of Oriental Dermacentor Koch, 1844 ticks stored in the United States National Tick Collection revealed that a morphologically distinct new species of this genus, namely D. falsosteini D. Apanaskevich, M. Apanaskevich & Nooma n. sp. should be recognized. Adults of D. tricuspis and D. falsosteini n. sp. can be distinguished from other species of Oriental Dermacentor and each other by the colour pattern of the conscutum and scutum, the pattern of punctations on the pseudoscutum and scutum, the shape of female genital structures and spurs on coxa I. Dermacentor tricuspis is recorded from Indonesia, Malaysia, the Philippines and Thailand where the adults were mostly collected from various species of wild pigs (Artiodactyla: Suidae) and vegetation; few adults were available from other mammals (Artiodactyla: Bovidae; Carnivora: Canidae, Felidae, Ursidae; Pholidota: Manidae), as well as humans and reptiles (Squamata: Elapidae, Varanidae). One male was reared from a nymph collected on a rodent (Rodentia: Muridae). Dermacentor falsosteini n. sp. is found in Indonesia, Malaysia and Thailand where the adults were collected from bearded pig, Sus barbatus Müller, wild boar, S. scrofa Linnaeus, unidentified wild pig, Sus sp. (Artiodactyla: Suidae), Malayan tapir, Tapirus indicus Desmarest (Perissodactyla: Tapiridae), human and vegetation.
    Matched MeSH terms: Species Specificity
  2. Muul I, Thonglongya K
    J Mammal, 1971 May;52(2):362-9.
    PMID: 5581370
    Matched MeSH terms: Species Specificity
  3. Teh CS, Chua KH, Thong KL
    J Appl Microbiol, 2010 Jun;108(6):1940-5.
    PMID: 19891709 DOI: 10.1111/j.1365-2672.2009.04599.x
    To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation.
    Matched MeSH terms: Species Specificity
  4. Teh CS, Chua KH, Puthucheary SD, Thong KL
    Jpn J Infect Dis, 2008 Jul;61(4):313-4.
    PMID: 18653978
    Salmonella enterica serovar Paratyphi A is a causative agent of paratyphoid fever. The clinical syndrome caused by paratyphoid fever overlaps with other febrile illnesses and cannot be distinguished from typhoid fever. Conventional methods used for diagnosis are time consuming, costly, and labor-intensive. We evaluated the specificity, sensitivity, and application of a multiplex polymerase chain reaction (PCR) previously developed by the method (Ou, H.Y., Teh, C.S.J., Thong, K.L., et al., J. Mol. Diagn., 9, 624-630, 2007) using 6 S. Paratyphi A, 22 S. Typhi, and 85 other Salmonella serovars as well as 36 non-Salmonella strains. The detection limit of the multiplex PCR was 4 x 10(4) cfu ml(-1). In a blind test of the other 50 strains, this multiplex PCR correctly identified the only S. Paratyphi A in the panel of strains. The sensitivity of this PCR using spiked blood and stool samples was 1 x 10(5) cfu ml(-1) and 2 x 10(5) cfu ml(-1), respectively, but increased to 1 x 10(4) cfu ml(-1) and 2 x 10(3) cfu ml(-1) after 5-h enrichment. We believe that this multiplex PCR is a promising technique for the specific and sensitive detection of S. Paratyphi A in clinical, environmental, and food samples.
    Matched MeSH terms: Species Specificity
  5. Hasan MR, Pulingam T, Appaturi JN, Zifruddin AN, Teh SJ, Lim TW, et al.
    Anal Biochem, 2018 08 01;554:34-43.
    PMID: 29870692 DOI: 10.1016/j.ab.2018.06.001
    In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s-1 to 90 mV s-1. The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 101 cfu mL-1 and 6.7 × 101 cfu mL-1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples.
    Matched MeSH terms: Species Specificity
  6. Benacer D, Zain SNM, Lewis JW, Khalid MKNM, Thong KL
    Rev Soc Bras Med Trop, 2017 Mar-Apr;50(2):239-242.
    PMID: 28562762 DOI: 10.1590/0037-8682-0364-2016
    INTRODUCTION:: This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    METHODS:: Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively.

    RESULTS:: The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water.

    CONCLUSIONS:: Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.
    Matched MeSH terms: Species Specificity
  7. Khan AM, Hu Y, Miotto O, Thevasagayam NM, Sukumaran R, Abd Raman HS, et al.
    BMC Med Genomics, 2017 12 21;10(Suppl 4):78.
    PMID: 29322922 DOI: 10.1186/s12920-017-0301-2
    BACKGROUND: Viral vaccine target discovery requires understanding the diversity of both the virus and the human immune system. The readily available and rapidly growing pool of viral sequence data in the public domain enable the identification and characterization of immune targets relevant to adaptive immunity. A systematic bioinformatics approach is necessary to facilitate the analysis of such large datasets for selection of potential candidate vaccine targets.

    RESULTS: This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis.

    CONCLUSION: These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation.

    Matched MeSH terms: Species Specificity
  8. Singh A, Priyambada P, Jabin G, Singh SK, Joshi BD, Venkatraman C, et al.
    Int J Legal Med, 2020 Sep;134(5):1613-1618.
    PMID: 32621146 DOI: 10.1007/s00414-020-02362-5
    Demand for pangolin scales in East Asia has increased dramatically in the past two decades, raising concern to the pangolin survival and bringing them to the brink of local extinction. Enumerating the number of individuals from the seized pangolin scales primarily goes undocumented, mostly due to the unavailability of the appropriate methods. In this study, we developed a Pangolin Indexing System, a multi-locus STR panel of eight dinucleotide microsatellites that showed promising results in individualization and assignment of scales into Chinese and Indian pangolins. The combined power of exclusion was 0.83 and 0.99 for Chinese and Indian pangolin. The select panel of eight polymorphic STRs exhibited the cumulative probability of identity 3.7 × 10-9 for Indian pangolin and 3.6 × 10-7 for Chinese pangolin and identified 51 unique genotypes from the 74 scales selected from the four pangolin seizures. The study demonstrated the first report of cross-species validation of STRs developed from Malayan pangolin to Indian pangolin and showed the potential application of Pangolin Indexing System in screening of large seizures through DNA profiling from the scales of Indian and Chinese pangolin.
    Matched MeSH terms: Species Specificity
  9. Tempelis CH
    PMID: 4395205
    Matched MeSH terms: Species Specificity*
  10. Feroz SR, Sumi RA, Malek SN, Tayyab S
    Exp Anim, 2015;64(2):101-8.
    PMID: 25519455 DOI: 10.1538/expanim.14-0053
    The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, K(a) in the range of 1.49 - 6.12 × 10(4) M(-1), with 1:1 binding stoichiometry. Based on the PS-albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics.
    Matched MeSH terms: Species Specificity
  11. Munusamy K, Vadivelu J, Tay ST
    Rev Iberoam Micol, 2018 03 12;35(2):68-72.
    PMID: 29544734 DOI: 10.1016/j.riam.2017.07.001
    BACKGROUND: Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

    AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

    METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

    RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

    CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.

    Matched MeSH terms: Species Specificity
  12. Agusa T, Kunito T, Yasunaga G, Iwata H, Subramanian A, Ismail A, et al.
    Mar Pollut Bull, 2005;51(8-12):896-911.
    PMID: 16023148
    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.
    Matched MeSH terms: Species Specificity
  13. Kueh CL, Yong CY, Masoomi Dezfooli S, Bhassu S, Tan SG, Tan WS
    Biotechnol Prog, 2017 Mar;33(2):549-557.
    PMID: 27860432 DOI: 10.1002/btpr.2409
    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017.
    Matched MeSH terms: Species Specificity
  14. Latif MA, Omar MY, Rafii MY, Malek MA, Tan SG
    C. R. Biol., 2013 Jul;336(7):354-63.
    PMID: 23932255 DOI: 10.1016/j.crvi.2013.06.006
    Morphological and host-plant relationship studies were conducted to differentiate two sympatric populations of brown planthopper (BPH), Nilaparvata lugens, one from rice (Oryza sativa) and the other from Leersia hexandra, a weed grass. In morphometric studies based on esterase activities, an UPGMA dendrogram using 17 quantitative morphological characters, including stridulatory organs (courtship signal-producing organs) between two sympatric populations of N. lugens, one from rice and the other from L. hexandra, a weed grass revealed that both populations were separated from each other. An out-group, N. bakeri, was found to be completely different from the two sympatric populations of N. lugens. Rice plants were best suited for the establishment of the rice-infesting population, and L. hexandra was a favourable host for the Leersia-infesting population. The individuals derived from one host did not thrive on the other host, as shown by a significant reduction in survival and nymphal development, ovipositional preferences, ovipositional response, and egg hatchability. Therefore, morphological and host-plant relationship studies indicate that rice-associated population with high esterase activities and L. heaxandra-associated population with low esterase activities are two closely related sibling species.
    Matched MeSH terms: Species Specificity
  15. Cheng S, Kirton LG, Panandam JM, Siraj SS, Ng KK, Tan SG
    PLoS One, 2011;6(6):e20992.
    PMID: 21687629 DOI: 10.1371/journal.pone.0020992
    Termites of the genus Odontotermes are important decomposers in the Old World tropics and are sometimes important pests of crops, timber and trees. The species within the genus often have overlapping size ranges and are difficult to differentiate based on morphology. As a result, the taxonomy of Odontotermes in Peninsular Malaysia has not been adequately worked out. In this study, we examined the phylogeny of 40 samples of Odontotermes from Peninsular Malaysia using two mitochondrial DNA regions, that is, the 16S ribosomal RNA and cytochrome oxidase subunit I genes, to aid in elucidating the number of species in the peninsula. Phylogenies were reconstructed from the individual gene and combined gene data sets using parsimony and likelihood criteria. The phylogenies supported the presence of up to eleven species in Peninsular Malaysia, which were identified as O. escherichi, O. hainanensis, O. javanicus, O. longignathus, O. malaccensis, O. oblongatus, O. paraoblongatus, O. sarawakensis, and three possibly new species. Additionally, some of our taxa are thought to comprise a complex of two or more species. The number of species found in this study using DNA methods was more than the initial nine species thought to occur in Peninsular Malaysia. The support values for the clades and morphology of the soldiers provided further evidence for the existence of eleven or more species. Higher resolution genetic markers such as microsatellites would be required to confirm the presence of cryptic species in some taxa.
    Matched MeSH terms: Species Specificity
  16. Cheng S, Lee CT, Wan MN, Tan SG
    Gene, 2013 Apr 15;518(2):412-8.
    PMID: 23328646 DOI: 10.1016/j.gene.2012.12.084
    Termites from the genus Odontotermes are known to contain numerous species complexes that are difficult to tell apart morphologically or with mitochondrial DNA sequences. We developed markers for one such cryptic species complex, that is, Odontotermes srinakarinensis sp. nov. from Maxwell Hill Forest Reserve (Perak, Malaysia), and characterised them using a sample of 41 termite workers from three voucher samples from the same area. We then genotyped 150 termite individuals from 23 voucher samples/colonies of this species complex from several sites in Peninsular Malaysia. We analysed their population by constructing dendograms from the proportion of shared-alleles between individuals and genetic distances between colonies; additionally, we examined the Bayesian clustering pattern of their genotype data. All methods of analysis indicated that there were two distinct clusters within our data set. After the morphologies of specimens from each cluster were reexamined, we were able to separate the two species morphologically and found that a single diagnostic character found on the mandibles of its soldiers could be used to separate the two species quite accurately. The additional species in the clade was identified as Odontotermes denticulatus after it was matched to type specimens at the NHM London and Cambridge Museum of Zoology.
    Matched MeSH terms: Species Specificity
  17. Manjeri G, Muhamad R, Faridah QZ, Tan SG
    J Genet, 2012 Nov 22;91(3):e92-6.
    PMID: 23257301
    Matched MeSH terms: Species Specificity
  18. Oh AMF, Tan CH, Ariaranee GC, Quraishi N, Tan NH
    J Proteomics, 2017 07 05;164:1-18.
    PMID: 28476572 DOI: 10.1016/j.jprot.2017.04.018
    The Indian krait (Bungarus caeruleus) is one of the "Big Four" venomous snakes widely distributed in South Asia. The present venomic study reveals that its venom (Sri Lankan origin) is predominated by phospholipases A2 (64.5% of total proteins), in which at least 4.6% are presynaptically-acting β-bungarotoxin A-chains. Three-finger toxins (19.0%) are the second most abundant, comprising 15.6% κ-neurotoxins, the potent postsynaptically-acting long neurotoxins. Comparative chromatography showed that venom samples from Sri Lanka, India and Pakistan did not exhibit significant variation. These venoms exhibited high immunoreactivity toward VINS Indian Polyvalent Antivenom (VPAV). The Pakistani krait venom, however, had a relatively lower degree of binding, consistent with its moderate neutralization by VPAV (potency=0.3mg venom neutralized per ml antivenom) while the Sri Lankan and Indian venoms were more effectively neutralized (potency of 0.44 mg/ml and 0.48 mg/ml, respectively). Importantly, VPAV was able to neutralize the Sri Lankan and Indian venoms to a comparable extent, supporting its use in Sri Lanka especially in the current situation where Sri Lanka-specific antivenom is unavailable against this species. The findings also indicate that the Pakistani B. caeruleus venom is immunologically less comparable and should be incorporated in the production of a pan-regional, polyspecific antivenom.

    BIOLOGICAL SIGNIFICANCE: The Indian krait or blue krait, Bungarus caeruleus, is a highly venomous snake that contributes to the snakebite envenoming problem in South Asia. This is a less aggressive snake species but its accidental bite can cause rapid and severe neurotoxicity, in which the patient may succumb to paralysis, respiratory failure and death within a short frame of time. The proteomic analysis of its venom (sourced from Sri Lanka) unveils its content that well correlates to its envenoming pathophysiology, driven primarily by the abundant presynaptic and postsynaptic neurotoxins (β-bungarotoxins and κ-neurotoxins, respectively). The absence of cytotoxins in the venom proteome also correlates with the lack of local envenoming sign (pain, swelling), and explains why the bite may be insidious until later stage when paralysis sets in. The muscarinic toxin-like proteins in the venom may be the cause of severe abdominal pain that precedes paralysis in many cases, and justifies the need of closely monitoring this symptom in suspected cases. Venom samples from Sri Lanka, India and Pakistan exhibited no remarkable variation in protein profiling and reacted immunologically toward the VINS Indian Polyvalent Antivenom, though to a varying extent. The antivenom is effective in neutralizing the Sri Lankan and Indian venoms, confirming its clinical use in the countries. The antivenom efficacy against the Pakistani venom, however, may be further optimized by incorporating the Pakistani venom in the antivenom production.

    Matched MeSH terms: Species Specificity
  19. Fung SY, Tan NH
    Indian J Exp Biol, 2013 Dec;51(12):1063-9.
    PMID: 24579371
    The major hemorrhagin from C. purpureomaculatus (mangrove pit viper) venom was purified to homogeneity and termed Maculatoxin. Maculatoxin has a molecular weight of 38 kDa as determined by SDS-PAGE. It is an acidic protein (pI= 4.2) and exhibited proteolytic and hemorrhagic activities (MHD10 = 0.84 microg in mice) but was not lethal to mice at a dose of 1 microg/g. The hemorrhagic activity of Maculatoxin was completely inactivated by EDTA and partially inhibited by ATP and citrate. The N-terminal sequence of Maculatoxin (TPEQQRFPPTYIDLGIFVDHGMYAT) shares a significant degree of homology with the metalloprotease domain of other venom hemorrhagins. Indirect ELISA showed anti-Maculatoxin cross reacted with protein components of many snake venoms. In the double-sandwich ELISA, however, anti-Maculatoxin cross-reacted only with venoms of certain species of the Trimeresurus (Asia lance-head viper) complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Species Specificity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links