Displaying publications 61 - 80 of 116 in total

Abstract:
Sort:
  1. Jothy SL, Saito T, Kanwar JR, Chen Y, Aziz A, Yin-Hui L, et al.
    Phys Med, 2016 Jan;32(1):150-61.
    PMID: 26526749 DOI: 10.1016/j.ejmp.2015.10.090
    The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  2. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    BMC Complement Altern Med, 2013 Oct 30;13:294.
    PMID: 24499255 DOI: 10.1186/1472-6882-13-294
    BACKGROUND: Oxidative stress due to abnormal induction of reactive oxygen species (ROS) molecules is believed to be involved in the etiology of many diseases. Evidences suggest that ROS is involved in nephrotoxicity through frequent exposure to industrial toxic agents such as thioacetamide (TAA). The current investigation was designed to explore the possible protective effects of the leaves of Vitex negundo(VN) extract against TAA-induced nephrotoxicity in rats.

    METHODS: Twenty four Sprague Dawleyrats were divided into four groups: (A) Normal control, (B) TAA (0.03% w/v in drinking water), (C) VN100 (VN 100 mg/kg + TAA) and (D) VN300 (VN 300 mg/kg + TAA). Blood urea and serum creatinine levels were measured,supraoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels of renal tissue were assayed. Histopathological analysis together with the oxidative stress nicotinamide adenine dinucleotide phosphate (NADPH) oxidase p22phox in kidney sections were examined in all experimental groups.

    RESULTS: Blood urea and serum creatinine levels were increased in TAA group as a result of the nephrotoxicity compared to the VN100 and VN300 groups where, the levels were significantly decreased (p 

    Matched MeSH terms: Superoxide Dismutase/metabolism
  3. Koriem KM, Arbid MS, Emam KR
    Environ Toxicol Pharmacol, 2014 Jul;38(1):14-23.
    PMID: 24860957 DOI: 10.1016/j.etap.2014.04.029
    Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  4. Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, et al.
    BMC Complement Med Ther, 2021 Jul 01;21(1):183.
    PMID: 34210310 DOI: 10.1186/s12906-021-03358-3
    BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation.

    METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays.

    RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples.

    CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.

    Matched MeSH terms: Superoxide Dismutase/metabolism
  5. Kuppusamy UR, Dharmani M, Kanthimathi MS, Indran M
    Biol Trace Elem Res, 2005 Jul;106(1):29-40.
    PMID: 16037608
    The trace elements copper, zinc, and selenium are important immune modulators and essential cofactors of the antioxidant enzymes. In the present study, the proliferative effect of human peripheral mononuclear cells (PBMCs) that have been exposed to copper, zinc, and selenium and the corresponding activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, were determined. Zinc and copper stimulated the PBMC proliferation in a dose-dependent manner within the dose range 25-200 micromol/L. SOD and GPx activities in PBMCs exposed to zinc were inhibited, whereas catalase activity was unaffected. All the three antioxidant enzymes in the cells exposed to copper were inhibited. Selenium exerted more potent inhibition of the cell proliferation while causing stimulation of the antioxidant enzymes at the lowest dose (25 micromol/L) than at the highest dose (200 micromol/L) tested. A significant negative correlation was observed between proliferation and antioxidant enzyme (SOD and GPx) activities in trace-element-exposed PBMC. The present findings substantiate the importance of trace elements as immune modulators and the involvement of enzymatic antioxidant system in the immune cell regulation.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  6. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    Clin Exp Pharmacol Physiol, 2011 Dec;38(12):854-9.
    PMID: 21973174 DOI: 10.1111/j.1440-1681.2011.05624.x
    1. The hypotensive effect of cross-fostering in spontaneously hypertensive rats (SHR) is thought to involve adjustments in renal function. However, its association with renal anti-oxidant/oxidant balance during cross-fostering is not known. 2. The present study examined the effect of cross-fostering and in-fostering of 1-day-old offspring between SHR and Wistar-Kyoto (WKY) dams on renal anti-oxidant/oxidant status and systolic blood pressure (SBP). Renal anti-oxidant/oxidant status and SBP were determined in the offspring from 4-16 weeks of age. 3. Cross-fostered SHR had significantly lower SBP than in-fostered SHR at 6, 8 and 12 weeks, but not at 16 weeks (127 ± 1 vs 144 ± 2, 138 ± 1 vs 160 ± 1, 174 ± 2 vs 184 ± 2 and 199 ± 2 vs 194 ± 3 mmHg at 6, 8, 12 and 16 weeks, respectively). No differences in SBP were evident between cross-fostered and in-fostered WKY rats. There were no significant differences in levels of thiobarbituric acid-reactive substances (TBARS), protein carbonyl and total anti-oxidant status (TAS) or superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase activity between cross-fostered and in-fostered SHR or WKY offspring. However, compared with WKY rats, catalase activity was higher at 6 and 16 weeks, TAS was higher at 16 weeks and GPx activity and TBARS were lower at 16 weeks in SHR. 4. It appears that cross-fostering of SHR offspring to WKY dams during the early postnatal period causes a transient delay in the rise in blood pressure in SHR and that this does not involve the renal anti-oxidant/oxidant system.
    Matched MeSH terms: Superoxide Dismutase/metabolism*
  7. Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X
    Drug Dev Res, 2019 09;80(6):837-845.
    PMID: 31301179 DOI: 10.1002/ddr.21567
    The objective of this study was to evaluate the neuroprotective effect of sitagliptin (Sita), quercetin (QCR) and its combination in β-amyloid (Aβ) induced Alzheimer's disease (AD). Male Sprague-Dawley rats, weighing between 220 and 280 g were used for experiment. Rats were divided into 5 groups (n = 10) and the groups were as follows: (a) Sham control; (b) Aβ injected; (c) Aβ injected + Sita 100; (d) Aβ injected + QCR 100; and (e) Aβ injected + Sita 100 + QCR 100. Cognitive performance was observed by the Morris water maze (MWM), biochemical markers, for example, MDA, SOD, CAT, GSH, Aβ1-42 level, Nrf2/HO-1 expression and histopathological study of rat brain were estimated. Pretreatment with Sita, QCR and their combination showed a significant increase in escape latency in particular MWM cognitive model. Further co-administration of sita and QCR significantly reduced Aβ1-42 level when compared with individual treatment. Biochemical markers, for example, increased SOD, CAT and GSH, decreased MDA were seen, and histopathological studies revealed the reversal of neuronal damage in the treatment group. Additionally, Nrf2/HO-1 pathway in rat's brain was significantly increased by Sita, QCR and their combination. Pretreatment with QCR potentiates the action of Sita in Aβ induced AD in rats. The improved cognitive memory could be because of the synergistic effect of the drugs by decreasing Aβ1-42 level, antioxidant activity and increased expression of Nrf2/HO-1 in rat brain.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  8. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA
    Eur J Cancer Prev, 2008 Nov;17(6):555-60.
    PMID: 18941377 DOI: 10.1097/CEJ.0b013e328305a10b
    Free radicals that induced lipid peroxidation and DNA damage have been implicated in many diseases including cancer. Cellular antioxidant defense plays an important role in neoplastic disease to counteract oxidative damage. This study aims to investigate the status of oxidative damage by measuring plasma malondialdehyde (MDA) level and urinary 8-hydroxydeoxyguanosine (8-OHdG), and the level of antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase in patients with cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma (SCC) of the cervix. Urinary 8-OHdG was measured by an enzyme-linked immunosorbent assay kit. MDA and antioxidant enzyme activities were determined by high-performance liquid chromatography and spectrophotometry, respectively. Eighty patients with CIN and SCC of the cervix were recruited and compared with normal controls. Urinary 8-OHdG/creatinine ratio did not show any significant changes in any disease status studied as compared with controls (P=0.803). Plasma MDA was found to be increased in CIN and SCC patients when compared with controls (P=0.002). Glutathione peroxidase activity was increased (P=0.0001) whereas superoxide dismutase and catalase activity was decreased (P=0.019 and 0.0001, respectively) in both CIN and SCC patients when compared with controls. Urinary 8-OHdG may not be a good marker for enhanced oxidative stress in cervical cancer. Oxidative damage as demonstrated by the level of MDA is markedly increased in CIN and SCC patients with changes of enzymatic antioxidants observed.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  9. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  10. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  11. Magalingam KB, Radhakrishnan A, Haleagrahara N
    Int J Mol Med, 2013 Jul;32(1):235-40.
    PMID: 23670213 DOI: 10.3892/ijmm.2013.1375
    Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  12. Makpol S, Yeoh TW, Ruslam FA, Arifin KT, Yusof YA
    PMID: 23948056 DOI: 10.1186/1472-6882-13-210
    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  13. Maniam S, Mohamed N, Shuid AN, Soelaiman IN
    Basic Clin Pharmacol Toxicol, 2008 Jul;103(1):55-60.
    PMID: 18598299 DOI: 10.1111/j.1742-7843.2008.00241.x
    The aim of this study was to investigate the effects of vitamin E on the levels of lipid peroxidation and antioxidant enzymes in rat bones. Fifty-six normal male Sprague-Dawley rats, aged 3 months, were randomly divided into seven groups with eight rats in each group. The age-matched control group was given the vehicle olive oil, by oral gavage daily. Six of the treatment groups received either palm tocotrienol or pure alpha-tocopherol at the dose of 30, 60 or 100 mg/kg body weight, by oral gavage daily, 6 days a week for 4 months. Thiobarbituric acid-reactive substance (TBARS) that is an index to measure the level of lipid peroxidation and the antioxidant enzymes, glutathione peroxidase and superoxide dismutase levels were measured in the femur at the end of the study. Palm tocotrienol at the dose of 100 mg/kg body weight significantly reduced the TBARS level in the femur with a significant increase in glutathione peroxidase activity compared to the age-matched control group. These were not observed in the alpha-tocopherol groups. Palm tocotrienol was more effective than pure alpha-tocopherol acetate in suppressing lipid peroxidation in bone. Palm tocotrienol showed better protective effect against free radical damage in the femur compared to alpha-tocopherol. This study suggests that palm tocotrienol plays an important role in preventing imbalance in bone metabolism due to free radicals.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  14. Moghadamtousi SZ, Rouhollahi E, Hajrezaie M, Karimian H, Abdulla MA, Kadir HA
    Int J Surg, 2015 Jun;18:110-7.
    PMID: 25899210 DOI: 10.1016/j.ijsu.2015.03.026
    Annona muricata, a member of the Annonaceae family, is commonly known as soursop and graviola. The leaves of this tropical fruit tree are widely used in folk medicine against skin diseases and abscesses, however there is no scientific evidence justifying the use of A. muricata leaves. The aim of the present study is to evaluate the wound healing potential of ethyl acetate extract of A. muricata leaves (EEAM) towards excisional wound models in rats.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  15. Mohamed M, Sulaiman SA, Jaafar H, Sirajudeen KN
    Int J Mol Sci, 2011;12(9):5508-21.
    PMID: 22016605 DOI: 10.3390/ijms12095508
    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  16. Mohd Ali N, Mohd Yusof H, Long K, Yeap SK, Ho WY, Beh BK, et al.
    Biomed Res Int, 2013;2013:693613.
    PMID: 23484140 DOI: 10.1155/2013/693613
    Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  17. Mohd Esa N, Abdul Kadir KK, Amom Z, Azlan A
    Food Chem, 2013 Nov 15;141(2):1306-12.
    PMID: 23790918 DOI: 10.1016/j.foodchem.2013.03.086
    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  18. Musalmah M, Nizrana MY, Fairuz AH, NoorAini AH, Azian AL, Gapor MT, et al.
    Lipids, 2005 Jun;40(6):575-80.
    PMID: 16149736
    The effect of supplementing 200 mg/kg body weight palm vitamin E (PVE) and 200 mg/kg body weight alpha-tocopherol (alpha-Toc) on the healing of wounds in streptozotocin-induced diabetic rats was evaluated. The antioxidant potencies of these two preparations of vitamin E were also evaluated by determining the antioxidant enzyme activities, namely, glutathione peroxidase (GPx) and superoxide dismutase (SOD), and malondialdehyde (MDA) levels in the healing of dermal wounds. Healing was evaluated by measuring wound contractions and protein contents in the healing wounds. Cellular redistribution and collagen deposition were assessed morphologically using cross-sections of paraffin-embedded day-10 wounds stained according to the Van Gieson method. GPx and SOD activities as well as MDA levels were determined in homogenates of day-10 dermal wounds. Results showed that PVE had a greater potency to enhance wound repair and induce the increase in free radical-scavenging enzyme activities than alpha-Toc. Both PVE and alpha-Toc, however, were potent antioxidants and significantly reduced the lipid peroxidation levels in the wounds as measured by the reduction in MDA levels.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  19. Musalmah M, Fairuz AH, Gapor MT, Ngah WZ
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S448-51.
    PMID: 12492633
    Vitamin E is composed of various subfamilies that include tocopherols and tocotrienols. These compounds have antioxidant properties but differ in structure, dietary source and potency. In this study we evaluated the efficacy of alpha-tocopherol as an antioxidant and its role in wound closure in normal and streptozotocin-induced diabetic rats. The healing of 6 cm linear incisions created on the back of each male Sprague-Dawley rat (250-300 g) was monitored by measuring the length of the wounds daily. The rats were divided into two categories; normal and streptozotocin-induced diabetic rats. For each category, the animals were further divided into two groups; those untreated and those receiving 200 mg/kg bodyweight alpha-tocopherols daily by oral gavage. All rats were fed standard food and water ad libitum. Blood samples were taken at 0, 5 and 10 days after the wounds were created for the determination of malondialdehyde levels and red cell superoxide dismutase, catalase and glutathione peroxidase activities. The results showed that alpha-tocopherol reduced plasma malondialdehyde levels, increased glutathione peroxidase activity and accelerated the rate of wound closure in treated rats.
    Matched MeSH terms: Superoxide Dismutase/metabolism
  20. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Superoxide Dismutase/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links