Displaying publications 61 - 80 of 378 in total

Abstract:
Sort:
  1. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Surface Properties
  2. Arahman N, Mulyati S, Fahrina A, Muchtar S, Yusuf M, Takagi R, et al.
    Molecules, 2019 Nov 13;24(22).
    PMID: 31766222 DOI: 10.3390/molecules24224099
    The removal of impurities from water or wastewater by the membrane filtration process has become more reliable due to good hydraulic performance and high permeate quality. The filterability of the membrane can be improved by having a material with a specific pore structure and good hydrophilic properties. This work aims at preparing a polyvinylidene fluoride (PVDF) membrane incorporated with phospholipid in the form of a 2-methacryloyloxyethyl phosphorylcholine, polymeric additive in the form of polyvinylpyrrolidone, and its combination with inorganic nanosilica from a renewable source derived from bagasse. The resulting membrane morphologies were analyzed by using scanning electron microscopy. Furthermore, atomic force microscopy was performed to analyze the membrane surface roughness. The chemical compositions of the resulting membranes were identified using Fourier transform infrared. A lab-scale cross-flow filtration system module was used to evaluate the membrane's hydraulic and separation performance by the filtration of humic acid (HA) solution as the model contaminant. Results showed that the additives improved the membrane surface hydrophilicity. All modified membranes also showed up to five times higher water permeability than the pristine PVDF, thanks to the improved structure. Additionally, all membrane samples showed HA rejections of 75-90%.
    Matched MeSH terms: Surface Properties
  3. Sarraf M, Razak BA, Nasiri-Tabrizi B, Dabbagh A, Kasim NHA, Basirun WJ, et al.
    J Mech Behav Biomed Mater, 2017 02;66:159-171.
    PMID: 27886563 DOI: 10.1016/j.jmbbm.2016.11.012
    Tantalum pentoxide nanotubes (Ta2O5NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta2O5NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H2SO4: HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin-1. The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity.
    Matched MeSH terms: Surface Properties
  4. Chew KK, Low KL, Sharif Zein SH, McPhail DS, Gerhardt LC, Roether JA, et al.
    J Mech Behav Biomed Mater, 2011 Apr;4(3):331-9.
    PMID: 21316621 DOI: 10.1016/j.jmbbm.2010.10.013
    This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise β-tri-calcium phosphate (β-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated with multi-walled carbon nanotubes (MWCNTs) or functionalized MWCNTs (MWCNTs-OH and MWCNTs-COOH). Scanning electron microscopy (SEM), compressive strength tests, injectability tests, Fourier transform infrared spectroscopy and X-ray diffraction were used to evaluate the properties of the final products. Compressive strength tests and SEM observations demonstrated particularly that the concomitant admixture of BSA and MWCNT improved the mechanical properties, resulting in stronger CPC composites. The presence of MWCNTs and BSA influenced the morphology of the hydroxyapatite (HA) crystals in the CPC matrix. BSA was found to act as a promoter of HA growth when bounded to the surface of CPC grains. MWCNT-OH-containing composites exhibited the highest compressive strengths (16.3 MPa), being in the range of values for trabecular bone (2-12 MPa).
    Matched MeSH terms: Surface Properties
  5. Anuar MS, Briscoe BJ
    Drug Dev Ind Pharm, 2010 Aug;36(8):972-9.
    PMID: 20515396 DOI: 10.3109/03639041003610807
    It is generally accepted that the tablet elastic relaxation during compaction plays a vital role in undermining the final tablet mechanical integrity. One of the least investigated stages of the compaction process is the ejection stage.
    Matched MeSH terms: Surface Properties
  6. Chai WL, Moharamzadeh K, van Noort R, Emanuelsson L, Palmquist A, Brook IM
    J Periodontal Res, 2013 Oct;48(5):663-70.
    PMID: 23442017 DOI: 10.1111/jre.12062
    Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM).
    Matched MeSH terms: Surface Properties
  7. Boyle DK, Forsyth A, Bagg J, Stroubou K, Griffiths CE, Burke FJ
    J Dent, 2002 Jul-Aug;30(5-6):233-41.
    PMID: 12450714
    Glove wearing during patient treatment has been central to dental surgery infection control for over 15 years. However, little is known about the cutaneous effects of glove wearing on the hands of dental healthcare workers (DHCWs). The objective of this project was to assess the hand skin health of DHCWs before and after wearing gloves of two types and to compare this with a control group of non-DHCWs.
    Matched MeSH terms: Surface Properties
  8. Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR
    Mater Sci Eng C Mater Biol Appl, 2015 Dec 1;57:397-413.
    PMID: 26354281 DOI: 10.1016/j.msec.2015.07.058
    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features.
    Matched MeSH terms: Surface Properties
  9. Pan KL, Pan GT, Chong S, Chang MB
    J Environ Sci (China), 2018 Jul;69:205-216.
    PMID: 29941256 DOI: 10.1016/j.jes.2017.10.012
    Double perovskite-type catalysts including La2CoMnO6 and La2CuMnO6 are first evaluated for the effectiveness in removing volatile organic compounds (VOCs), and single perovskites (LaCoO3, LaMnO3, and LaCuO3) are also tested for comparison. All perovskites are tested with the gas hourly space velocity (GHSV) of 30,000hr-1, and the temperature range of 100-600°C for C7H8 removal. Experimental results indicate that double perovskites have better activity if compared with single perovskites. Especially, toluene (C7H8) can be completely oxidized to CO2 at 300°C as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskites own unique surface properties and are of higher amounts of lattice oxygen, leading to higher activity. Additionally, apparent activation energy of 68kJ/mol is calculated using Mars-van Krevelen model for C7H8 oxidation with La2CoMnO6 as catalyst. For durability test, both La2CoMnO6 and La2CuMnO6 maintain high C7H8 removal efficiencies of 100% and 98%, respectively, at 300°C and 30,000hr-1, and they also show good resistance to CO2 (5%) and H2O(g) (5%) of the gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalysts operated at 300-350°C, indicating that double perovskites are promising catalysts for VOCs removal.
    Matched MeSH terms: Surface Properties
  10. Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, et al.
    Arch Toxicol, 2017 Jan;91(1):509-519.
    PMID: 27180073 DOI: 10.1007/s00204-016-1730-y
    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.
    Matched MeSH terms: Surface Properties
  11. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J Sci Food Agric, 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Surface Properties
  12. Foo ML, Tan CR, Lim PD, Ooi CW, Tan KW, Chew IML
    Int J Biol Macromol, 2019 Oct 01;138:1064-1071.
    PMID: 31301392 DOI: 10.1016/j.ijbiomac.2019.07.035
    Rod-shape particles have been a good drug carrier due to the long circulatory time, tumor accumulation and high cellular uptake in body. Acid-hydrolysed nanocrystalline cellulose (NCC) from empty fruit bunch exhibited a width of 13-30nm and a length of 150-360nm in rod-shape structure. NCC holds good potential as a bio-based drug carrier owing to its biodegradability and biocompatibility. Fourier-transform infrared spectroscopy results confirmed the binding of curcumin onto the NCC modified with tannic acid (TA) and decylamine (DA). TA-DA modification rendered NCC with a higher level of hydrophobicity, as evidenced by a substantial increase in contact angle from 45° to 73°. The modified NCC had the curcumin-binding efficiency in the range of 95-99%, which is at least twofold higher than the unmodified NCC at any curcumin concentration tested. This remarkable curcumin-binding effciency was comparable to that of commercialized NCC from wood-based origin. This work suggests NCC as a superior and sustainable drug carrier, while TA-DA modification is a promising approach to alter the surface property of NCC for an efficient binding of curcumin.
    Matched MeSH terms: Surface Properties
  13. Gan S, Piao SH, Choi HJ, Zakaria S, Chia CH
    Carbohydr Polym, 2016 Feb 10;137:693-700.
    PMID: 26686181 DOI: 10.1016/j.carbpol.2015.11.035
    Cellulose carbamate (CC) was produced from kenaf core pulp (KCP) via a microwave reactor-assisted method. The formation of CC was confirmed by Fourier transform infrared spectroscopy and nitrogen content analysis. The degree of substitution, zeta potential and size distribution of CC were also determined. The CC was characterized with scanning electron microscopy, X-ray diffraction and thermogravimetry analysis. The CC particles were then dispersed in silicone oil to prepare CC-based anhydrous electric stimuli-responsive electrorheological (ER) fluids. Rhelogical measurement was carried out using rotational rheometer with a high voltage generator in both steady and oscillatory shear modes to examine the effect of electric field strength on the ER characteristics. The results showed that the increase in electric field strength has enhanced the ER properties of CC-based ER fluid due to the chain formation induced by electric polarization among the particles.
    Matched MeSH terms: Surface Properties
  14. Subramanian P, Rajnikanth PS, Kumar M, Chidambram K
    Curr Drug Deliv, 2020;17(1):74-86.
    PMID: 31721703 DOI: 10.2174/1567201816666191112111610
    OBJECTIVE: A novel, Supersaturable Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) has been prepared to improve the Dutasteride's poor aqueous solubility.

    METHODS: By adding Hydroxy Propyl Methyl Cellulose (HPMC) as a precipitation inhibitor to conventional SNEDDS, a supersaturable system was prepared. Firstly, the prepared SNEDDS played an important role in increasing the aqueous solubility and hence oral absorption due to nano-range size. Secondly, the S-SNEDDS found to be advantageous over SNEDDS for having a higher drug load and inhibition of dilution precipitation of Dutasteride. Formulated S-SNEDDS (F1-F9) ranged from 37.42 ± 1.02 to 68.92 ± 0.09 nm with PDI 0.219-0.34 and drug loading of over 95 percent.

    RESULTS: The study of in-vitro dissolution revealed higher dissolution for S-SNEDDS compared to SNEDDS and Avodart soft gelatin capsule as a commercial product. In addition, higher absorption was observed for S-SNEDDS showing approximately 1.28 and 1.27 fold AUC (0-24h) and Cmax compared to commercial products. Therefore, S-SNEDDS has proven as a novel drug delivery system with a higher drug load, higher self-emulsification efficiency, higher stability, higher dissolution and pronounced absorption.

    CONCLUSION: In conclusion, S-SNEDDS could be a newly emerging approach to enhance aqueous solubility in many folds for drugs belonging to BCS Class II and IV and thus absorption and oral bioavailability.

    Matched MeSH terms: Surface Properties
  15. Almoustafa HA, Alshawsh MA, Chik Z
    Anticancer Drugs, 2021 Aug 01;32(7):745-754.
    PMID: 33675612 DOI: 10.1097/CAD.0000000000001065
    Poly lactic-co-glycolic acid (PLGA) nanoparticles are intensively studied nanocarriers in drug delivery because of their biodegradability and biochemical characteristics. Polyethylene glycol (PEG) coating for nanocarriers gives them long circulation time in blood and makes them invisible to the reticuloendothelial system. Breast cancer cells have greater uptake of hyaluronic acid compared to normal cells as it binds to their overexpressed CD44 receptors. Since hypoxia plays an important role in cancer metastasis; we formulated PEG-PLGA nanoparticles coated with hyaluronic acid as targeted delivery system for doxorubicin (DOX) using nanoprecipitation method, and characterized them for chemical composition, size, surface charge, shape, and encapsulation efficiency. Then we tested them in vitro on hypoxia-optimized metastatic breast cancer cells. The nanoparticles were spherical with an average size of about 106 ± 53 nm, a negative surface charge (-15 ± 3 mV), and high encapsulation efficiency (73.3 ± 4.1%). In vitro investigation with hypoxia-elevated CD44 MDA-MB-231 cells showed that hyaluronic acid-targeted nanoparticles maintained their efficacy despite hypoxia-induced drug resistance unlike free DOX and nontargeted nanoparticles. In conclusion, this study revealed a simple third generation nanoparticle formulation for targeted treatment of hypoxia-induced drug resistance in breast cancer metastatic cells. Further, optimization is needed including In vivo efficacy and nanoparticle-specific pharmacokinetic studies.
    Matched MeSH terms: Surface Properties
  16. Koay GF, Chuah TG, Zainal-Abidin S, Ahmad S, Choong TS
    J Oleo Sci, 2011;60(5):237-65.
    PMID: 21502724
    Hydroxyl fatty acids and their derivatives are of high value due to their wide range of industrial application, including cosmetic, food, personal care and pharmaceutical products. Realizing the importance of hydroxyl fatty acids, and yet due to the absence of the conventional starting raw materials, Malaysia has developed 9,10-dihydroxystearic acid (9,10-DHSA) and its derivatives from locally abundant palm based oils. The aim of this article is to provide a general description of the works that have thus far being done on palm based 9,10-DHSA: starting from its conception and production from commercial grade palm based crude oleic acid via epoxidation and hydrolysis, purification through solvent crystallization and characterization through wet and analytical chemistry, moving on to developmental works done on producing its derivatives through blending, esterification, amidation and polymerization, and completing with applications of 9,10-DHSA and its derivatives, e.g. DHSA-stearates and DHSA-estolides, in commercial products such as soaps, deodorant sticks and shampoos. This article incorporates some of the patent filed technological knowhow on 9,10-DHSA and its derivatives, and will also point out some of the shortcomings in previously published documents and provide some recommendations for future research works in mitigating these shortcomings.
    Matched MeSH terms: Surface Properties
  17. Nourouzi MM, Chuah TG, Choong TS
    Water Sci Technol, 2011;63(5):984-94.
    PMID: 21411950 DOI: 10.2166/wst.2011.280
    The removal of Reactive Black 5 dye in an aqueous solution by electrocoagulation (EC) as well as addition of flocculant was investigated. The effect of operational parameters, i.e. current density, treatment time, solution conductivity and polymer dosage, was investigated. Two models, namely the artificial neural network (ANN) and the response surface method (RSM), were used to model the effect of independent variables on percentage of dye removal. The findings of this work showed that current density, treatment time and dosage of polymer had the most significant effect on percentage of dye removal (p<0.001). In addition, interaction between time and current density, time and dosage of polymer, current density and dosage of polymer also significantly affected the percentage of dye removal (p=0.034, 0.003 and 0.024, respectively). It was shown that both the ANN and RSM models were able to predict well the experimental results (R(2)>0.8).
    Matched MeSH terms: Surface Properties
  18. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Surface Properties
  19. Amornsudthiwat P, Mongkolnavin R, Kanokpanont S, Panpranot J, Wong CS, Damrongsakkul S
    Colloids Surf B Biointerfaces, 2013 Nov 1;111:579-86.
    PMID: 23893032 DOI: 10.1016/j.colsurfb.2013.07.009
    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.
    Matched MeSH terms: Surface Properties
  20. Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M
    Int J Biol Macromol, 2018 Feb;107(Pt B):1792-1799.
    PMID: 29032214 DOI: 10.1016/j.ijbiomac.2017.10.045
    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.
    Matched MeSH terms: Surface Properties
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links