Displaying publications 61 - 80 of 391 in total

Abstract:
Sort:
  1. Abdullah R, Wesseling S, Spenkelink B, Louisse J, Punt A, Rietjens IMCM
    J Appl Toxicol, 2020 12;40(12):1647-1660.
    PMID: 33034907 DOI: 10.1002/jat.4024
    Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing.
    Matched MeSH terms: Swine
  2. Zahari Z, Lee CS, Ibrahim MA, Musa N, Mohd Yasin MA, Lee YY, et al.
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S787-S803.
    PMID: 33828379 DOI: 10.4103/jpbs.JPBS_248_19
    Introduction: Dopamine receptor D2 (DRD2) is one of the dopamine receptors that have been studied in relation to opioid dependence. It is possible, therefore, that DRD2 gene (DRD2) polymorphisms influence treatment outcomes of patients with opioid dependence. The objective of this study was to investigate the influence of DRD2 polymorphisms on the clinical outcomes of opioid-dependent patients on methadone maintenance therapy (MMT).

    Materials and Methods: Patients with opioid dependence (n = 148) were recruited from MMT clinics. Pain sensitivity, severity of the opiate withdrawal syndrome, and sleep quality were assessed using cold pressor test (CPT), Subjective Opiate Withdrawal Scale (SOWS-M), and Pittsburgh Sleep Quality Index (PSQI)-Malay, respectively. Deoxyribonucleic acid (DNA) was extracted from whole blood, and then was used for genotyping of Val96Ala, Leu141Leu, Val154Ile, Pro310Ser, Ser311Cys, TaqI A, -141C Ins/Del, and A-241G polymorphisms.

    Results: Among 148 patients, 8.1% (n = 12), 60.8% (n = 90), 27.7% (n = 41), and 29.1% (n = 43) had at least one risk allele for Ser311Cys, TaqI A, -141C Ins/Del, and A-241G polymorphisms, respectively. There were no significant differences in pain responses (pain threshold, tolerance, and intensity), SOWS, and PSQI scores between DRD2 polymorphisms.

    Conclusion: The common DRD2 polymorphisms are not associated with pain sensitivity, severity of the opiate withdrawal syndrome, and sleep quality in patients with opioid dependence on MMT. However, this may be unique for Malays. Additional research should focus on investigating these findings in larger samples and different ethnicity.

    Matched MeSH terms: Swine
  3. Fayaz MA, Awang-Junaidi AH, Singh J, Honaramooz A
    Ultrasound Med Biol, 2020 11;46(11):3088-3103.
    PMID: 32800471 DOI: 10.1016/j.ultrasmedbio.2020.07.010
    Testis tissue xenografting and testis cell aggregate implantation from various donor species into recipient mice are novel models for the study and manipulation of testis formation and function in target species. Thus far, the analysis of such studies has been limited to surgical or post-mortem retrieval of samples. Here we used ultrasound biomicroscopy (UBM) to monitor the development of neonatal porcine testis grafts and implants in host mice for 24 wk, and to correlate UBM and (immuno)histologic changes. This led to long-term visualization of gradual changes in volume, dimension and structure of grafts and implants; detection of a 4 wk developmental gap between grafts and implants; and revelation of differences in implant development depending on the craniocaudal site of implantation on the back of host mice. Our data support the reliability and precision of UBM for longitudinal study of transplants, which eliminates the need for frequent surgical sampling.
    Matched MeSH terms: Swine
  4. Rauff-Adedotun AA, Mohd Zain SN, Farah Haziqah MT
    Parasitol Res, 2020 Nov;119(11):3559-3570.
    PMID: 32951145 DOI: 10.1007/s00436-020-06828-8
    Blastocystis is the most frequently observed eukaryotic gastrointestinal symbiont in humans and animals. Its low host specificity and zoonotic potential suggest that animals might serve as possible reservoirs for transmission. The prevalence and subtype distributions of Blastocystis sp. in animal populations in Southeast Asia, a hotspot for zoonotic diseases, are reviewed. Recommendations for future research aimed at understanding the zoonotic role of Blastocystis are also included. Seven countries have, so far, reported Blastocystis infection in various animals, such as livestock, poultry, companion animals, and non-human primates. Pigs were the most studied animals, and there were records of 100% prevalence in pigs, cattle, and ostriches. Using polymerase chain reaction (PCR)-based approaches, twelve Blastocystis sp. subtypes (STs), namely ST1, ST2, ST3, ST4, ST5, ST6, ST7, ST8, ST9, ST10, ST12, and ST14 have been recognised infecting animals of Southeast Asia. ST1 and ST5 were the most frequently identified, and Malaysia observed the most diverse distribution of subtypes. Further investigations on Blastocystis sp. in various animal hosts, using adequate sample sizes and uniform detection methods, are essential for a better understanding of the distribution of this organism. Detailed genome studies, especially on STs shared by humans and animals, are also recommended.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/parasitology
  5. Noor NM, Abdul-Aziz A, Sheikh K, Somavarapu S, Taylor KMG
    Pharmaceutics, 2020 Oct 20;12(10).
    PMID: 33092119 DOI: 10.3390/pharmaceutics12100994
    Dutasteride, licensed as an oral medicine for the treatment of benign prostatic hypoplasia, has been investigated as a treatment for androgenic alopecia. In this study, the potential for dustasteride to be delivered topically in order to reduce systemic exposure, irritation of the skin, and also cytotoxicity was explored. Chitosan oligomer (CSO) was successfully synthesised with lauric acid as a coating for a dutasteride-loaded nanostructured lipid carriers (DST-NLCs) system. DST-NLCs were prepared using a combination of melt-dispersion and ultrasonication. These negatively charged NLCs (-18.0 mV) had a mean particle size of ~184 nm, which was not significantly increased (p > 0.05) when coated with lauric acid-chitosan oligomer (CSO-LA), whilst the surface charge changed to positive (+24.8 mV). The entrapment efficiency of DST-NLCs was 97%, and coated and uncoated preparations were physically stable for up to 180 days at 4-8 °C. The drug release was slower from DST-NLCs coated with CSO-LA than from uncoated NLCs, with no detectable drug permeation through full-thickness pig ear skin from either preparation. Considering the cytotoxicity, the IC50 values for the DST-NLCs, coated and uncoated with CSO-LA were greater than for dutasteride alone (p < 0.05). DST-NLCs and empty NLCs coated with CSO-LA at 25 µM increased the cell proliferation compared to the control, and no skin irritation was observed when the DST-NLC formulations were tested using EpiDerm™. The cell and skin uptake studies of coated and uncoated NLCs incorporating the fluorescent marker Coumarin-6 showed the time-dependent uptake of Coumarin-6. Overall, the findings suggest that DST-NLCs coated with CSO-LA represent a promising formulation strategy for dutasteride delivery for the treatment of androgenic alopecia, with a reduced cytotoxicity compared to that of the drug alone and lower irritancy than an ethanolic solution of dutasteride.
    Matched MeSH terms: Swine
  6. Ma C, Lo PK, Xu J, Li M, Jiang Z, Li G, et al.
    Bioresour Technol, 2020 Oct;314:123731.
    PMID: 32615447 DOI: 10.1016/j.biortech.2020.123731
    In this study, the differences on the physico-chemical parameters, lignocellulose degradation, dynamic succession of microbial community, gene expression of carbohydrate-active enzymes and antibiotics resistance genes were compared during composting systems of bagasse pith/pig manure (BP) and manioc waste/pig manure (MW). The results revealed that biodegradation rates of organic matter, cellulose, hemicellulose and lignin (29.14%, 17.53%,45.36% and 36.48%) in BP were higher than those (15.59%, 16.74%, 41.23% and 29.77%) in MW. In addition, the relative abundance of Bacillus, Luteimonas, Clostridium, Pseudomonas, Streptomyces and expression of genes encoding carbohydrate- active enzymes in BP were higher than those in MW based on metagenomics sequencing. During composting, antibiotics and antibiotic resistance genes were substantially reduced, but the removal efficiency was divergent in the both samples. Taken together, metagenomics analysis was a potential method for evaluating lignocellulose's biodegradation process and determining the elimination of antibiotic and antibiotic resistance genes from different composting sources of biomass.
    Matched MeSH terms: Swine
  7. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

    Matched MeSH terms: Swine
  8. Wongnak P, Thanapongtharm W, Kusakunniran W, Karnjanapreechakorn S, Sutassananon K, Kalpravidh W, et al.
    BMC Vet Res, 2020 Aug 24;16(1):300.
    PMID: 32838786 DOI: 10.1186/s12917-020-02502-4
    BACKGROUND: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in 1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis (MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge. Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts.

    RESULTS: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5).

    CONCLUSIONS: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a timely fashion once they occur.

    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/virology
  9. Montini Maluda MC, Jelip J, Ibrahim MY, Suleiman M, Jeffree MS, Binti Aziz AF, et al.
    Am J Trop Med Hyg, 2020 08;103(2):864-868.
    PMID: 32524958 DOI: 10.4269/ajtmh.19-0928
    Japanese encephalitis (JE) is endemic in Malaysia. Although JE vaccination is practiced in the neighboring state of Sarawak for a long time, little is known about JE in Sabah state in Borneo. As a result, informed policy formulation for JE in Sabah has not been accomplished. In the present study, we have analyzed JE cases that have been reported to the Sabah State Health Department from 2000 to 2018. A total of 92 JE cases were reported during 19 years, and three-fourths of the cases were attributed to children. The estimated mean incidence for JE cases is 0.161/100,000 population. Japanese encephalitis was predominant in Sabah during June, July, and August, peaking in July. In most cases, pigs were absent within a 400-m radius of the place of residence. We could not establish any relationship between the mapping of JE cases and the number of piggeries in each district. We could not establish a relationship between average rainfall and JE cases, either. We propose the cases reported are possibly showing the tip of an iceberg and continuous surveillance is needed, as JE is a public health challenge in Sabah.
    Matched MeSH terms: Swine
  10. Awang-Junaidi AH, Fayaz MA, Kawamura E, Sobchishin L, MacPhee DJ, Honaramooz A
    Cell Tissue Res, 2020 Aug;381(2):361-377.
    PMID: 32388763 DOI: 10.1007/s00441-020-03218-5
    Gonocytes in the neonatal testis have male germline stem cell potential. The objective of the present study was to examine the behavior and ultrastructure of gonocytes in culture. Neonatal porcine testis cells were cultured for 4 weeks and underwent live-cell imaging to explore real-time interactions among cultured cells. This included imaging every 1 h from day 0 to day 3, every 2 h from day 4 to day 7, and every 1 h for 24 h at days 14, 21, and 28. Samples also underwent scanning electron microscopy, transmission electron microscopy, morphometric evaluations, immunofluorescence, and RT-PCR. Live-cell imaging revealed an active amoeboid-like movement of gonocytes, assisted by the formation of extensive cytoplasmic projections, which, using scanning electron microscopy, were categorized into spike-like filopodia, leaf-like lamellipodia, membrane ruffles, and cytoplasmic blebs. In the first week of culture, gonocytes formed loose attachments on top of a somatic cell monolayer and, in week 2, formed grape-like clusters, which, over time, grew in cell number. Starting at week 3 of culture, some of the gonocyte clusters transformed into large multinucleated embryoid body-like colonies (EBLCs) that expressed both gonocyte- and pluripotent-specific markers. The number and diameter of individual gonocytes, the number and density of organelles within gonocytes, as well as the number and diameter of the EBLCs increased over time (P 
    Matched MeSH terms: Swine
  11. Rohman A, Windarsih A
    Int J Mol Sci, 2020 Jul 21;21(14).
    PMID: 32708254 DOI: 10.3390/ijms21145155
    Halal is an Arabic term used to describe any components allowed to be used in any products by Muslim communities. Halal food and halal pharmaceuticals are any food and pharmaceuticals which are safe and allowed to be consumed according to Islamic law (Shariah). Currently, in line with halal awareness, some Muslim countries such as Indonesia, Malaysia, and Middle East regions have developed some standards and regulations on halal products and halal certification. Among non-halal components, the presence of pig derivatives (lard, pork, and porcine gelatin) along with other non-halal meats (rat meat, wild boar meat, and dog meat) is typically found in food and pharmaceutical products. This review updates the recent application of molecular spectroscopy, including ultraviolet-visible, infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies, in combination with chemometrics of multivariate analysis, for analysis of non-halal components in food and pharmaceutical products. The combination of molecular spectroscopic-based techniques and chemometrics offers fast and reliable methods for screening the presence of non-halal components of pig derivatives and non-halal meats in food and pharmaceutical products.
    Matched MeSH terms: Swine
  12. Xiu L, Binder RA, Alarja NA, Kochek K, Coleman KK, Than ST, et al.
    J Clin Virol, 2020 07;128:104391.
    PMID: 32403008 DOI: 10.1016/j.jcv.2020.104391
    BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats.

    OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily.

    STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types.

    CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.

    Matched MeSH terms: Swine; Swine Diseases/diagnosis*; Swine Diseases/virology
  13. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2020 07;100:103906.
    PMID: 32422387 DOI: 10.1016/j.bioorg.2020.103906
    A new series of 4H-chromene-3-carboxylate derivatives were synthesized using multicomponent reaction of salicylaldehyde, ethyl acetoacetate and dimedone in ethanol with K3PO4 as a catalyst at 80 °C. The structures of all newly synthesized compounds were confirmed by spectral techniques viz. IR, 1H NMR, 13C NMR, and LCMS analysis. The newly synthesized compounds 4a to 4j were screened against elastase enzyme. Interestingly, all these compounds found to be potent elastase inhibitors with much lower IC50 value. The compound 4b was found to be most potent elastase inhibitor (IC50 = 0.41 ± 0.01 µM) amongst the synthesized series against standard Oleanolic Acid (IC50 value = 13.45 ± 0.0 µM). The Kinetics mechanism for compound 4b was analyzed by Lineweaver-Burk plots which revealed that compound inhibited elastase competitively by forming an enzyme-inhibitor complex. Along with this, all the synthesized compounds (4a - 4j) exhibits excellent DPPH free radical scavenging ability. The inhibition constant Ki for compound 4b was found to be 0.6 µM. The computational study was comprehensible with the experimental results with good docking energy values (Kcal/mol). Therefore, these molecules can be considered as promising medicinal scaffolds for the treatment of skin-related maladies.
    Matched MeSH terms: Swine
  14. Aupalee K, Saeung A, Srisuka W, Fukuda M, Streit A, Takaoka H
    Pathogens, 2020 Jun 25;9(6).
    PMID: 32630410 DOI: 10.3390/pathogens9060512
    The transmission of zoonotic filarial parasites by black flies has so far been reported in the Chiang Mai and Tak provinces, Thailand, and the bites of these infected black flies can cause a rare disease-human zoonotic onchocerciasis. However, species identification of the filarial parasites and their black fly vectors in the Chiang Mai province were previously only based on a morphotaxonomic analysis. In this study, a combined approach of morphotaxonomic and molecular analyses (mitochondrial cox1, 12S rRNA, and nuclear 18S rRNA (SSU HVR-I) genes) was used to clarify the natural filarial infections in female black flies collected by using human and swine baits from two study areas (Ban Lek and Ban Pang Dang) in the Chiang Mai province from March 2018 to January 2019. A total of 805 and 4597 adult females, belonging to seven and nine black fly taxa, were collected from Ban Lek and Ban Pang Dang, respectively. At Ban Lek, four of the 309 adult females of Simulium nigrogilvum were positive for Onchocerca species type I in the hot and rainy seasons. At Ban Pang Dang, five unknown filarial larvae (belonging to the same new species) were detected in Simulium sp. in the S. varicorne species-group and in three species in the S. asakoae species-group in all seasons, and three non-filarial larvae of three different taxa were also found in three females of the S. asakoae species-group. This study is the first to molecularly identify new filarial species and their vector black fly species in Thailand.
    Matched MeSH terms: Swine
  15. Xia NB, Lu Y, Zhao PF, Wang CF, Li YY, Tan L, et al.
    Trop Biomed, 2020 Jun 01;37(2):489-498.
    PMID: 33612818
    Toxoplasma gondii, a ubiquitous pathogen that infects nearly all warm-blooded animals and humans, can cause severe complications to the infected people and animals as well as serious economic losses and social problems. Here, one local strain (TgPIG-WH1) was isolated from an aborted pig fetus, and the genotype of this strain was identified as ToxoDB #3 by the PCR RFLP typing method using 10 molecular markers (SAG1, SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, C22-8, C29-2 and Apico). A comparison of the virulence of this isolate with other strains in both mice and piglets showed that TgPIG-WH1 was less virulent than type 1 strain RH and type 2 strain ME49 in mice, and caused similar symptoms to those of ME49 such as fever in piglets. Additionally, in piglet infection with both strains, the TgPIG-WH1 caused a higher IgG response and more severe pathological damages than ME49. Furthermore, TgPIG-WH1 caused one death in the 5 infected piglets, whereas ME49 did not, suggesting the higher virulence of TgPIG-WH1 than ME49 during piglet infection. Experimental infections indicate that the virulence of TgPIG-WH1 relative to ME49 is weaker in mice, but higher in pigs. This is probably the first report regarding a ToxoDB #3 strain from pigs in Hubei, China. These data will facilitate the understanding of genetic diversity of Toxoplasma strains in China as well as the prevention and control of porcine toxoplasmosis in the local region.
    Matched MeSH terms: Swine; Swine Diseases/parasitology*
  16. Elvert M, Sauerhering L, Maisner A
    J Infect Dis, 2020 05 11;221(Suppl 4):S395-S400.
    PMID: 31665348 DOI: 10.1093/infdis/jiz455
    During the Nipah virus (NiV) outbreak in Malaysia, pigs and humans were infected. While pigs generally developed severe respiratory disease due to effective virus replication and associated inflammation processes in porcine airways, respiratory symptoms in humans were rare and less severe. To elucidate the reasons for the species-specific differences in NiV airway infections, we compared the cytokine responses as a first reaction to NiV in primary porcine and human bronchial epithelial cells (PBEpC and HBEpC, respectively). In both cell types, NiV infection resulted in the expression of type III interferons (IFN-λ). Upon infection with similar virus doses, viral RNA load and IFN expression were substantially higher in HBEpC. Even if PBEpC expressed the same viral RNA amounts as NiV-infected HBEpC, the porcine cells showed reduced IFN- and IFN-dependent antiviral gene expression. Despite this inherently limited IFN response, the expression of proinflammatory cytokines (IL-6, IL-8) in NiV-infected PBEpC was not decreased. The downregulation of antiviral activity in the presence of a functional proinflammatory cytokine response might be one of the species-specific factors contributing to efficient virus replication and acute inflammation in the lungs of pigs infected with the Malaysian NiV strain.
    Matched MeSH terms: Swine
  17. Pham TH, Lila MAM, Rahaman NYA, Lai HLT, Nguyen LT, Do KV, et al.
    BMC Vet Res, 2020 May 06;16(1):128.
    PMID: 32375821 DOI: 10.1186/s12917-020-02345-z
    BACKGROUND: In view of the current swine fever outbreak and the government aspiration to increase the goat population, a need arises to control and prevent outbreaks of goat pox. Despite North Vietnam facing sporadic cases of goat pox, this most recent outbreak had the highest recorded morbidity, mortality and case fatality rate. Thus, owing to the likelihood of a widespread recurrence of goat pox infection, an analysis of that outbreak was done based on selected signalment, management and disease pattern (signs and pathology) parameters. This includes examination of animals, inspection of facilities, tissue sampling and analysis for confirmation of goatpox along with questionaires.

    RESULTS: It was found that the susceptible age group were between 3 and 6 months old kids while higher infection rate occurred in those under the free-range rearing system. The clinical signs of pyrexia, anorexia, nasal discharge and lesions of pocks were not restricted to the skin but have extended into the lung and intestine. The pathogen had been confirmed in positive cases via PCR as goat pox with prevalence of 79.69%.

    CONCLUSIONS: The epidemiology of the current goat pox outbreak in North Vietnam denotes a significant prevalence which may affect the industry. This signals the importance of identifying the salient clinical signs and post mortem lesions of goat pox at the field level in order to achieve an effective control of the disease.

    Matched MeSH terms: Classical Swine Fever; Swine
  18. Ruviniyia K, Abdullah DA, Sumita S, Lim YAL, Ooi PT, Sharma RSK
    Parasitol Res, 2020 May;119(5):1663-1674.
    PMID: 32219552 DOI: 10.1007/s00436-020-06648-w
    Enterocytozoon bieneusi is an emerging opportunistic pathogen infecting humans, and both domestic and wild pigs are known to harbour zoonotic genotypes. There remains a paucity of information on the prevalence and epidemiology of this enteropathogen in Southeast Asia. The present study was undertaken to determine the molecular prevalence and risk factors associated with E. bieneusi infection among commercially farmed pigs in Malaysia. Faecal samples were collected from 450 pigs from 15 different farms and subjected to nested PCR amplification of the ribosomal internal transcribed spacer (ITS) gene of E. bieneusi. Phylogenetic analysis involved 28 nucleotide sequences of the ITS region of E. bieneusi. An interviewer-administered questionnaire provided information on the animal hosts, farm management systems and environmental factors and was statistically analysed to determine the risk factors for infection. The prevalence of E. bieneusi infection was relatively high (40.7%). The highest prevalence (51.3%) was recorded among the piglets, while the adults showed the lowest level of infection (31.3%). Multivariate analysis indicated that age of the pigs, distance of the farm from human settlement and farm management system were significant risk factors of infection. Three genotypes (EbpA, EbpC and Henan-III) detected among the pigs are potentially zoonotic. The high prevalence of E. bieneusi among locally reared pigs, the presence of zoonotic genotypes and the spatial distribution of pig farms and human settlements warrant further investigation on the possibility of zoonotic transmission.
    Matched MeSH terms: Swine/parasitology*; Swine Diseases/epidemiology*
  19. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
    Matched MeSH terms: Swine
  20. Raja Nhari RMH, Muhammad Zailani AN, Khairil Mokhtar NF, Hanish I
    PMID: 32027553 DOI: 10.1080/19440049.2020.1717645
    The usage of porcine pepsin or other porcine derivatives in food products is a common practice in European, American and certain Asian countries although it creates issues in religious and personnel health concerns. In this study, porcine pepsin was detected using indirect ELISA that involved the anti-pep80510 polyclonal antibody raised against a specific peptide of porcine pepsin, pep80510. The sensitivity of the assay for standard porcine pepsin was 0.008 µg/g. The immunoassay did not cross-react to other animal rennet and milk proteins except for microbial coagulant from Mucor miehie. The recovery of porcine pepsin in spiked cheese curd within the range of CV < 20% while for porcine pepsin in spiked cheese whey the recovery is also within the range of CV% < 20%.
    Matched MeSH terms: Swine
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links