Displaying publications 61 - 80 of 363 in total

Abstract:
Sort:
  1. Amirah Mohd Napi NN, Ibrahim N, Adli Hanif M, Hasan M, Dahalan FA, Syafiuddin A, et al.
    Bioengineered, 2023 Dec;14(1):2276391.
    PMID: 37942779 DOI: 10.1080/21655979.2023.2276391
    Microplastic (MP) is an emerging contaminant of concern due to its abundance in the environment. Wastewater treatment plant (WWTP) can be considered as one of the main sources of microplastics in freshwater due to its inefficiency in the complete removal of small MPs. In this study, a column-based MP removal which could serve as a tertiary treatment in WWTPs is evaluated using granular activated carbon (GAC) as adsorbent/filter media, eliminating clogging problems commonly caused by powder form activated carbon (PAC). The GAC is characterized via N2 adsorption-desorption isotherm, field emission scanning electron microscopy, and contact angle measurement to determine the influence of its properties on MP removal efficiency. MPs (40-48 μm) removal up to 95.5% was observed with 0.2 g/L MP, which is the lowest concentration tested in this work, but still higher than commonly used MP concentration in other studies. The performance is reduced with further increase in MP concentration (up to 1.0 g/L), but increasing the GAC bed length from 7.5 to 17.5 cm could lead to better removal efficiencies. MP particles are immobilized by the GAC predominantly by filtration process by being entangled with small GAC particles/chips or stuck between the GAC particles. MPs are insignificantly removed by adsorption process through entrapment in GAC porous structure or attachment onto the GAC surface.
    Matched MeSH terms: Waste Disposal, Fluid
  2. Amosa MK, Jami MS, Alkhatib MF, Majozi T
    Environ Sci Pollut Res Int, 2016 Nov;23(22):22554-22567.
    PMID: 27557958
    This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m(-3) of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m(-3)) for such wastewater reclamation.
    Matched MeSH terms: Waste Disposal, Fluid
  3. Ang ZY, Cheah KY, Abdullah NB, Samsuri SB, Lee SH, Yem AW, et al.
    J Oncol Pharm Pract, 2020 Sep;26(6):1306-1317.
    PMID: 31810422 DOI: 10.1177/1078155219891209
    PURPOSE: To identify the cost and reasons of returned parenteral chemotherapy regimens at a tertiary hospital in Kuala Lumpur, Malaysia.

    METHODS: Data were retrospectively extracted from all the Chemotherapy Return Forms in 2016, which is a compulsory documentation accompanying each return of parenteral chemotherapy regimen. The following data were extracted: patient's diagnosis, gender, location of treatment (i.e. ward/daycare clinic), start date of chemotherapy regimen, type of cytotoxic drug returned, dose of cytotoxic drug returned, number of cytotoxic drug preparations returned and reason for return as well as whether the returned cytotoxic drug preparations could be re-dispensed. The cost of wastage was calculated based on the cost per mg (or per unit) of the particular returned cytotoxic drug.

    RESULTS: One hundred and fifty-nine cases of returned chemotherapy regimen comprising of 231 parenteral cytotoxic drug preparations were analysed. The total cost of returned chemotherapy regimen for 2016 was €3632, with €756 (20.8%) worth of chemotherapy regimens returned due to preventable reasons and €2876 (79.2%) worth of chemotherapy regimens returned due to non-preventable reasons. Approximately 50% of cases returned chemotherapy regimen were due to deterioration of patient's clinical condition and another 24.5% of cases of returned chemotherapy regimen were attributed to adverse drug reactions.

    CONCLUSION: Wastage associated to non-preventable reasons such as adverse drug reactions and preventable causes like refusal of patients can be further reduced by using newer healthcare innovations and establishment of written institutional protocols or standard operating procedures as references for in-charge healthcare personnel when cytotoxic drug-related issues occur. Adoption of cost-saving strategies that have been proven by studies could further improve current cost containment strategies.

    Matched MeSH terms: Waste Disposal, Fluid/economics; Waste Disposal, Fluid/methods*
  4. Ansari M, Othman F, Abunama T, El-Shafie A
    Environ Sci Pollut Res Int, 2018 Apr;25(12):12139-12149.
    PMID: 29455350 DOI: 10.1007/s11356-018-1438-z
    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R2) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  6. Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5168-5178.
    PMID: 27221586 DOI: 10.1007/s11356-016-6909-5
    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm(2)), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm(2), electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  7. Asrami MR, Pirouzi A, Nosrati M, Hajipour A, Zahmatkesh S
    Chemosphere, 2024 Jan;347:140652.
    PMID: 37967679 DOI: 10.1016/j.chemosphere.2023.140652
    Although algal-based membrane bioreactors (AMBRs) have been demonstrated to be effective in treating wastewater (landfill leachate), there needs to be more research into the effectiveness of these systems. This study aims to determine whether AMBR is effective in treating landfill leachate with hydraulic retention times (HRTs) of 8, 12, 14, 16, 21, and 24 h to maximize AMBR's energy efficiency, microalgal biomass production, and removal efficiency using artificial neural network (ANN) models. Experimental results and simulations indicate that biomass production in bioreactors depends heavily on HRT. A decrease in HRT increases algal (Chlorella vulgaris) biomass productivity. Results also showed that 80% of chemical oxygen demand (COD) was removed from algal biomass by bioreactors. To determine the most efficient way to process the features as mentioned above, nondominated sorting genetic algorithm II (NSGA-II) techniques were applied. A mesophilic, suspended-thermophilic, and attached-thermophilic organic loading rate (OLR) of 1.28, 1.06, and 2 kg/m3/day was obtained for each method. Compared to suspended-thermophilic growth (3.43 kg/m3.day) and mesophilic growth (1.28 kg/m3.day), attached-thermophilic growth has a critical loading rate of 10.5 kg/m3.day. An energy audit and an assessment of the system's auto-thermality were performed at the end of the calculation using the Monod equation for biomass production rate (Y) and bacteria death constant (Kd). According to the results, a high removal level of COD (at least 4000 mg COD/liter) leads to auto-thermality.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  8. Auta M, Hameed BH
    Colloids Surf B Biointerfaces, 2013 May 1;105:199-206.
    PMID: 23376092 DOI: 10.1016/j.colsurfb.2012.12.021
    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had <20% adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters.
    Matched MeSH terms: Waste Disposal, Fluid
  9. Azad SA, Vikineswary S, Chong VC, Ramachandran KB
    Lett Appl Microbiol, 2004;38(1):13-8.
    PMID: 14687209
    Rhodovulum sulfidophilum was grown in settled undiluted and nonsterilized sardine processing wastewater (SPW). The aims were to evaluate the effects of inoculum size and media on the biomass production with simultaneous reduction of chemical oxygen demand (COD).
    Matched MeSH terms: Waste Disposal, Fluid/methods
  10. Azad SA, Vikineswary S, Ramachandran KB, Chong VC
    Lett Appl Microbiol, 2001 Oct;33(4):264-8.
    PMID: 11559398
    AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand.

    METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth.

    CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.

    Matched MeSH terms: Waste Disposal, Fluid
  11. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  12. Aziz HA, Adlan MN, Ariffin KS
    Bioresour Technol, 2008 Apr;99(6):1578-83.
    PMID: 17540556
    This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  13. Aziz HA, Alias S, Adlan MN, Faridah, Asaari AH, Zahari MS
    Bioresour Technol, 2007 Jan;98(1):218-20.
    PMID: 16386895
    A study was conducted to investigate the efficiency of coagulation and flocculation processes for removing colour from a semi-aerobic landfill leachate from one of the landfill sites in Malaysia. Four types of coagulant namely aluminium (III) sulphate (alum), ferric (III) chloride, ferrous (II) sulphate and ferric (III) sulphate were studied using standard jar test apparatus. Results indicated that ferric chloride was superior to the other coagulants and removed 94% of colour at an optimum dose of 800 mg/l at pH 4. The effect of coagulant dosages on colour removal showed similar trend as for COD, turbidity and suspended solids. This suggested that colour in landfill leachate was mainly contributed by organic matters with some insoluble forms that exhibited turbidity and suspended solids readings. The results from this study suggested that ferric chloride could be a viable coagulant in managing colour problems associated with landfill leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Aziz HA, Othman N, Yusuff MS, Basri DR, Ashaari FA, Adlan MN, et al.
    Environ Int, 2001 May;26(5-6):395-9.
    PMID: 11392757
    This paper discusses heavy metal removal from wastewater by batch study and filtration technique through low-cost coarse media. Batch study has indicated that more than 90% copper (Cu) with concentration up to 50 mg/l could be removed from the solution with limestone quantity above 20 ml (equivalent to 56 g), which indicates the importance of limestone media in the removal process. This indicates that the removal of Cu is influenced by the media and not solely by the pH. Batch experiments using limestone and activated carbon indicate that both limestone and activated carbon had similar metal-removal efficiency (about 95%). Results of the laboratory-scale filtration technique using limestone particles indicated that above 90% removal of Cu was achieved at retention time of 2.31 h, surface-loading rate of 4.07 m3/m2 per day and Cu loading of 0.02 kg/m3 per day. Analyses of the limestone media after filtration indicated that adsorption and absorption processes were among the mechanisms involved in the removal processes. This study indicated that limestone can be used as an alternative to replace activated carbon.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  16. Azlan K, Wan Saime WN, Lai Ken L
    J Environ Sci (China), 2009;21(3):296-302.
    PMID: 19634439
    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan for both acid dyes were comparatively higher than those of chitosan-EGDE. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed the best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.
    Matched MeSH terms: Waste Disposal, Fluid
  17. Bahari I, Mohsen N, Abdullah P
    J Environ Radioact, 2007;95(2-3):161-70.
    PMID: 17428589
    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.
    Matched MeSH terms: Waste Disposal, Fluid
  18. Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, et al.
    Chemosphere, 2023 Oct;339:139693.
    PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693
    Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  19. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Bashir MJK, Wei CJ, Aun NC, Abu Amr SS
    J Environ Manage, 2017 May 15;193:458-469.
    PMID: 28262420 DOI: 10.1016/j.jenvman.2017.02.031
    Malaysia alone produces more than 49 million m3 palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent. Thus, the aim of this study was to resolve such issue by using electro persulphate oxidation process, for the first time, as a post treatment of palm oil mill effluent. Central composite design in response surface methodology was used to analyze and optimize the interaction of operational variables (i.e., current density, contact time, initial pH and persulphate dosage) targeted on maximum treatment efficiency. The significance of quadratic model of each response was determined by analysis of variance, where all models indicated sufficient significance with p-value 
    Matched MeSH terms: Waste Disposal, Fluid*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links