Displaying publications 61 - 80 of 510 in total

Abstract:
Sort:
  1. Rahman MM, Ara MG, Alim MA, Uddin MS, Najda A, Albadrani GM, et al.
    Int J Mol Sci, 2021 Apr 26;22(9).
    PMID: 33925852 DOI: 10.3390/ijms22094498
    Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body's oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.
    Matched MeSH terms: Water Purification
  2. Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DN, Rajendran S
    Environ Pollut, 2021 Apr 15;275:116598.
    PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598
    Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
    Matched MeSH terms: Water Purification*
  3. Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, et al.
    Biotechnol Biofuels, 2021 Apr 07;14(1):87.
    PMID: 33827663 DOI: 10.1186/s13068-021-01939-5
    Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
    Matched MeSH terms: Water Purification
  4. Praveena SM, Syahira Asmawi M, Chyi JLY
    Environ Sci Pollut Res Int, 2021 Apr;28(15):18518-18522.
    PMID: 32935209 DOI: 10.1007/s11356-020-10795-z
    Microplastics have been recognized as emerging pollutants with potential ecotoxicological impact. The contribution of washing machine use to microplastics emission at the household level is still not completely understood. This study aims to characterize microplastic emissions in laundry water from household washing machines from Greater Kuala Lumpur (Malaysia). Microplastics were found between 6.9E-3 and 0.183 g/m3 in laundry water at household level. Microplastic shapes of fiber and fragment consist of polyester, nylon, and acrylic with average length of 2258.59 μm and were also identified in these laundry water samples. Questionnaire survey findings demonstrated fabric properties and washing parameters both likely contribute to microplastic emissions in laundry water and, ultimately, wastewater treatment plant influent. The impact of fabric properties and washing parameter factors on microplastic emission in laundry water at the household level merits further investigation. The findings of this study demonstrated the potential of laundry water as a microplastic source at the household level within a developing country.
    Matched MeSH terms: Water Purification
  5. Mehmood A, Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):19563-19588.
    PMID: 33651297 DOI: 10.1007/s11356-021-12589-3
    Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.
    Matched MeSH terms: Water Purification*
  6. Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW
    Sci Total Environ, 2021 Mar 15;760:143966.
    PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966
    Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
    Matched MeSH terms: Water Purification
  7. Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, et al.
    J Environ Manage, 2021 Mar 15;282:111946.
    PMID: 33486234 DOI: 10.1016/j.jenvman.2021.111946
    Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
    Matched MeSH terms: Water Purification
  8. Chang SH
    Carbohydr Polym, 2021 Mar 15;256:117423.
    PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423
    Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
    Matched MeSH terms: Water Purification
  9. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
    Matched MeSH terms: Water Purification*
  10. Salehmin MNI, Lim SS, Satar I, Daud WRW
    Sci Total Environ, 2021 Mar 10;759:143485.
    PMID: 33279184 DOI: 10.1016/j.scitotenv.2020.143485
    Microbial desalination cells (MDCs) have been experimentally proven as a versatile bioelectrochemical system (BES). They have the potential to alleviate environmental pollution, reduce water scarcity and save energy and operational costs. However, MDCs alone are inadequate to realise a complete wastewater and desalination treatment at a high-efficiency performance. The assembly of identical MDC units that hydraulically and electrically connected can improve the performance better than standalone MDCs. In the same manner, the coupling of MDCs with other BES or conventional water reclamation technology has also exhibits a promising performance. However, the scaling-up effort has been slowly progressing, leading to a lack of knowledge for guiding MDC technology into practicality. Many challenges remain unsolved and should be mitigated before MDCs can be fully implemented in real applications. Here, we aim to provide a comprehensive chronological-based review that covers technological limitations and mitigation strategies, which have been developed for standalone MDCs. We extend our discussion on how assembled, coupled and scaled-up MDCs have improved in comparison with standalone and lab-scale MDC systems. This review also outlines the prevailing challenges and potential mitigation strategies for scaling-up based on large-scale specifications and evaluates the prospects of selected MDC systems to be integrated with conventional anaerobic digestion (AD) and reverse osmosis (RO). This review offers several recommendations to promote up-scaling studies guided by the pilot scale BES and existing water reclamation technologies.
    Matched MeSH terms: Water Purification*
  11. Mengting Z, Kurniawan TA, Avtar R, Othman MHD, Ouyang T, Yujia H, et al.
    J Hazard Mater, 2021 03 05;405:123999.
    PMID: 33288338 DOI: 10.1016/j.jhazmat.2020.123999
    We test the feasibility of TiO2(B)@carbon composites as adsorbents, derived from wheat straws, for tetracycline (TC) adsorption from aqueous solutions. Hydrochar (HC), biochar (BC), and hydrochar-derived pyrolysis char (HDPC) are synthesized hydrothermally from the waste and then functionalized with TiO2(B), named as 'Composite-1', 'Composite-2', and 'Composite-3', respectively. A higher loading of TiO2(B) into the HC was also synthesized for comparison, named as 'Composite-4'. To compare their physico-chemical changes before and after surface modification, the composites are characterized using FESEM-EDS, XRD, BET, FRTEM, and FTIR. The effects of H2O2 addition on TC removal are investigated. Adsorption kinetics and isotherms of TC removal are studied, while TC adsorption mechanisms are elaborated. We found that the Composite-4 has the highest TC removal (93%) at pH 7, 1 g/L of dose, and 4 h of reaction time at 50 mg/L of TC after adding H2O2 (10 mM). The TC adsorption capacities of the Composite-1 and Composite-4 are 40.65 and 49.26 mg/g, respectively. The TC removal by the Composite-1 follows the pseudo-second order. Overall, this suggests that converting the wheat straw into HC and then functionalizing its surface with TiO2(B) as a composite has added values to the waste as an adsorbent for wastewater treatment.
    Matched MeSH terms: Water Purification*
  12. Rashid SS, Liu YQ
    Sci Total Environ, 2021 Feb 20;756:143849.
    PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849
    The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
    Matched MeSH terms: Water Purification*
  13. Chiao YH, Sengupta A, Ang MBMY, Chen ST, Haan TY, Almodovar J, et al.
    Polymers (Basel), 2021 Feb 15;13(4).
    PMID: 33672026 DOI: 10.3390/polym13040583
    Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
    Matched MeSH terms: Water Purification
  14. Abba MU, Che Man H, Syahidah Azis R, Idris AI, Hazwan Hamzah M, Abdulsalam M
    PMID: 33546264 DOI: 10.3390/ijerph18041400
    The present study synthesized nano-magnetite (Fe3O4) from milled steel chips using the high energy ball milling (HEBM) method, characterized it, and then utilized it as a sorbent to remediate boron concentration at various pH (4-9), dosages (0.1-0.5 g), contact times (20-240 min), and initial concentrations (10-100 mg/L). The nano-sorbents were characterized based on SEM structure, elemental composition (EDX), surface area analysis (BET), crystallinity (XRD), and functional group analysis (FTIR). The highest adsorption capacity of 8.44 mg/g with removal efficiency of 84% was attained at pH 8, 0.5 g dosage, contact time of 180 min, and 50 mg/L initial concentration. The experimental data fit best with the pseudo-second-order kinetic model with R2 of 0.998, while the Freundlich adsorption isotherm describes the adsorption process with an R2 value of 0.9464. A regeneration efficiency of 47% was attained even after five cycles of reusability studies. This efficiency implies that the nano-magnetite has the potential for sustainable industrial application.
    Matched MeSH terms: Water Purification*
  15. Alkarkhi AFM, Amr SSA, Alqaraghuli WAA, Özdemir Y, Zulkifli M, Mahmud MN
    Data Brief, 2021 Feb;34:106685.
    PMID: 33409347 DOI: 10.1016/j.dib.2020.106685
    This article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables. The data obtained from face centered composite design (FCCD) were analyzed by using analysis of variance (ANOVA) and regression model to find the optimum operating conditions for the selected factors.
    Matched MeSH terms: Water Purification
  16. Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Aziz S, Soomro SA, et al.
    Environ Sci Pollut Res Int, 2021 Feb;28(5):5005-5019.
    PMID: 33241504 DOI: 10.1007/s11356-020-11691-2
    Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify alternative sources. The next option is the renewable resources which are most important for energy purpose coupled with environmental problem reduction. Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. The involvement of various disciplines had been contributing to enhancing the performance of the MFCs. This review covers the performance of MFC along with different wastewater as a substrate in terms of treatment efficiencies as well as for energy generation. Apart from this, effect of various parameters and use of different nanomaterials for performance of MFC were also studied. From the current study, it proves that the use of microbial fuel cell along with the use of nanomaterials could be the waste and energy-related problem-solving approach. MFC could be better in performances based on optimized process parameters for handling any wastewater from industrial process.
    Matched MeSH terms: Water Purification*
  17. Chen CY, Kuo EW, Nagarajan D, Dong CD, Lee DJ, Varjani S, et al.
    Bioresour Technol, 2021 Jan 28;326:124773.
    PMID: 33548816 DOI: 10.1016/j.biortech.2021.124773
    In this study, process optimization for the microalgae-based piggery wastewater treatment was carried out by growing Chlorella sorokiniana AK-1 on untreated piggery wastewater with efficient COD/BOD/TN/TP removal and high biomass/protein productivities. Integration of the immobilization carriers (sponge, activated carbon) and semi-batch cultivation resulted in the effective treatment of raw untreated piggery wastewater. With 100% wastewater, 0.2% sponge and 2% activated carbon, the semi-batch cultivation (90% media replacement every 6 days) exhibited a COD, BOD, TN and TP removal efficiency of 95.7%, 99.0%, 94.1% and 96.9%, respectively. The maximal protein content, protein productivity, lutein content, and lutein productivity of the obtained microalgal biomass was 61.1%, 0.48 g/L/d, 4.56 mg/g, and 3.56 mg/L/d, respectively. The characteristics of the treated effluent satisfied Taiwan Piggery Wastewater Discharge Standards (COD 
    Matched MeSH terms: Water Purification
  18. Sher F, Hanif K, Rafey A, Khalid U, Zafar A, Ameen M, et al.
    J Environ Manage, 2021 Jan 15;278(Pt 2):111302.
    PMID: 33152547 DOI: 10.1016/j.jenvman.2020.111302
    The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.
    Matched MeSH terms: Water Purification*
  19. Rambabu K, Bharath G, Banat F, Show PL
    J Hazard Mater, 2021 01 15;402:123560.
    PMID: 32759001 DOI: 10.1016/j.jhazmat.2020.123560
    Production of multi-functional zinc oxide nanoparticles (ZnO-NPs) for wastewater treatment through green-approaches is a desirable alternative for conventional synthesis routes. Biomass waste valorization for nanoparticles synthesis has received increased research attention. The present study reports date pulp waste (DPW) utilization as an effective bio-reductant for green-synthesis of ZnO-NPs. A simple and eco-friendly process with low reaction time and calcination temperature was adopted for DPW mediated ZnO-NPs (DP-ZnO-NPs) synthesis. Microscopic investigations of DP-ZnO-NPs confirmed the non-agglomeration and spherical nature of particles with mean diameter of 30 nm. EDX and XPS analysis defined the chemical composition and product purity of DP-ZnO-NPs. UV and photoluminescence studies exhibited surface plasmonic resonance at 381 nm and fluorescent nature of DP-ZnO-NPs. FTIR studies established a formation mechanism outline for DP-ZnO-NPs. XRD and Raman investigations confirmed the crystalline and hexagonal wurtzite phase of DP-ZnO-NPs. DSC/TG analysis displayed the thermal stability of DP-ZnO-NPs with <10 wt% loss upto 700 °C. Photocatalytic degradation of hazardous methylene blue and eosin yellow dyes using DP-ZnO-NPs, showed rapid decomposition rate with 90 % degradation efficiency. Additionally, DP-ZnO-NPs demonstrated significant antibacterial effects on various pathogenic bacteria in terms of zone-of-inhibition measured by disc-diffusion method. Thus, the as-prepared DP-ZnO-NPs is suitable for industrial wastewater treatment.
    Matched MeSH terms: Water Purification*
  20. Aziz NIHA, Hanafiah MM
    Environ Pollut, 2021 Jan 01;268(Pt B):115948.
    PMID: 33187839 DOI: 10.1016/j.envpol.2020.115948
    The sustainability performance of the desalination processes has received increasing attention in recent years. In this study, the current progress and future perspective of a life cycle assessment (LCA) of desalination technology in 62 previous studies have been reviewed for the period 2004-2019. It was found that the number of LCA studies related to seawater reverse osmosis has gained popularity compared to other types of desalination technologies. The review emphasized the application of LCA to desalination by means of research objective, scope of study, life stages, and impact assessment. Although previous LCA studies were conducted to assess the environmental performance of the desalination technology, little attention was given to evaluating the impact of other sustainability aspects (i.e., economic and social). The latter part of this study discusses the challenges, feasibility, and recommendations for future LCA studies on desalination technology. The integration of the LCA approach with other approaches allows a comprehensive assessment of the sustainability performance of desalination technology. Thus, the combined approaches should be explored in future studies to gain insight into the sensitivity and uncertainty of the data to make an assessment that can be useful in policy-making.
    Matched MeSH terms: Water Purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links