Displaying publications 61 - 80 of 119 in total

Abstract:
Sort:
  1. M.T. Amin, M.Y. Han, Tschung-il Kim, A.A. Alazba, M.N. Amin
    Sains Malaysiana, 2013;42:1273-1281.
    The application of solar disinfection for treating stored rainwater was investigated by the authors using indicator organisms. The multiple tube fermentation technique and pour plate method were used for the detection of microbial quality indicators like total and fecal coliforms, E. coli and heterotrophic plate count. These techniques have disadvantages mainly that these are laborious and time consuming. The correlation of total coliform with that of exposure time is proposed under different factors of weather, pH and turbidity. Statistical tools like root mean square error and coefficient of determination were used to validate these proposed equations. The correlation equations of fecal coliform, E. coli and heterotrophic plate count with total coliform are suggested by using four regression analysis including Reciprocal Quadratic, Polynomial Regression (2 degree), Gaussian Model and Linear Regression in order to reduce the tedious experimental work in similar types of experiments and treatment systems.
    Matched MeSH terms: Weather
  2. Lowe BG
    Health Phys, 1978 May;34(5):439-44.
    PMID: 568609
    Matched MeSH terms: Weather
  3. Li CF, Lim TW, Han LL, Fang R
    PMID: 3835698
    An epidemio-meteorotropic analytical study of Selangor, in the Southwest coast of Peninsular Malaysia, examines the monthly incidence of dengue for the period 1973-1982 to assess possible quantitative association with the monthly rainfall. The relationships between rainfall, abundance of A. aegypti and dengue infection during 1982 in Jinjang, a dengue-prone area in Selangor, were also examined. A quantitative association between rainfall and the number of dengue cases was found during the first wet period. The lag time between the onset of heavy rain and dengue outbreak was about two to three months. A 120% increase in the number of dengue cases was observed when the monthly rainfall was 300 mm or more. Positive associations were seen between the incidence of dengue and the Aedes house index and the Breteau index in Jinjang. The relationships between these three variables and rainfall suggest that the latter might have exerted its effect on dengue infection partly through the creation of more breeding sites for A. aegypti. Assessment of the importance of A. aegypti in the transmission of dengue in this locality was not possible because of the lack of adjustment for A. albopictus, the other known vector of dengue in the state, and for social and other environmental factors influencing infection rates. In spite of this and the interpretational problems common in aggregate studies, the present analyses have provided relatively strong statistical evidence of an association between rainfall and dengue outbreaks in Selangor, thereby indicating that it is a factor worthy of careful surveillance and monitoring.
    Matched MeSH terms: Weather*
  4. Lau ASY, Mitsuyama E, Odamaki T, Xiao JZ, Liong MT
    J Med Food, 2019 Mar;22(3):230-240.
    PMID: 30183458 DOI: 10.1089/jmf.2018.4276
    Changes in weather often trigger a myriad of negative impacts on the environment, which eventually affect human health. During the early months of 2016, Malaysia experienced El Niño, with an extremely dry season of almost zero rainfall. At the same time, an increase of more than twofold in fecal secretary immunoglobulin-A (SIgA) levels of healthy preschool children aged 2-6 years was observed, accompanied by an increase in phylum Bacteroidetes, predominantly attributed to genus Bacteroides and Odoribacter, which also positively correlated with fecal SIgA levels. Here, we present evidence to illustrate the detrimental effects of weather change on a microscopic "environment," the human gut ecosystem. We also discuss the protective effects of probiotic against dysbiosis as induced by weather change. The increase in Bacteroidetes was at an expense of decreased genus Faecalibacterium and Veillonella (phylum Firmicutes), whereas children consuming probiotic had a decrease in genus Collinsella, Atopobium, and Eggerthella (phylum Actinobacteria) instead.
    Matched MeSH terms: Weather
  5. Kura NU, Ramli MF, Sulaiman WN, Ibrahim S, Aris AZ, Mustapha A
    Int J Environ Res Public Health, 2013 May;10(5):1861-81.
    PMID: 23648442 DOI: 10.3390/ijerph10051861
    Groundwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (PCA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island's hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island's water types into Ca-HCO3 water type, Na-HCO3 water type, Na-SO4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question.
    Matched MeSH terms: Weather
  6. Khan MF, Hamid AH, Rahim HA, Maulud KNA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2020 Aug 15;730:139091.
    PMID: 32413602 DOI: 10.1016/j.scitotenv.2020.139091
    The Southeast Asian (SEA) region is no stranger to forest fires - the region has been suffering from severe air pollution (known locally as 'haze') as a result of these fires, for decades. The fires in SEA region are caused by a combination of natural (the El Niño weather pattern) and manmade (slash-and-burn and land clearing for plantations) factors. These fires cause the emissions of toxic aerosols and pollutants that can affect millions of people in the region. Thus, this study aims to identify the impact of the SEA haze on the Southern region of the Malaysian Peninsula and Borneo region of East Malaysia using the entire air quality observation data at surface level in 2015. Overall, the concentration of PM10 was about two-fold higher during the haze period compared to non-haze period. The concentrations of CO, flux of CO and flux of BC were aligned with PM10 during the entire observation period. The wind field and cluster of trajectory indicated that the Southern Malaysian Peninsula and Borneo were influenced mainly from the wildfires and the combustion of peat soil in the Indonesian Borneo. This study finds that wildfires from Borneo impacted the Southern Malaysian Borneo more seriously than that from Sumatra region.
    Matched MeSH terms: Weather
  7. Khan M, Kakar S, Marwat K, Khan I
    Sains Malaysiana, 2013;42:1395-1401.
    Time of weed control and fertilizer application usually decide the profitability of crop production. The effects of weed control and macronutrients on maize crop were investigated. The study was undertaken in March 2009, using a RCBD design with split plot arrangements. The experimental set up was established at the Agricultural University Peshawar and seedbeds were prepared with the proper moisture regime. Maize was planted with one plot left weed free for first six weeks while another infested with weed. The combinations of macronutrients used were nitrogen, phosphorus, potassium, nitrogen-phosphorus, nitrogen-potassium, phosphorus-potassium and nitrogen-phosphorus-potassium. Control (no fertilizer) was included for comparison. The observations revealed that when a comparison was made between the application of fertilizers and weed control, the latter proved more important because weed infested plots had no harvestable maize plants. The role of main nutrients in crop production is well known and cannot be left aside, however weed infestation does not provide us a fair choice of fertilizers application. The maximum maize grain yield was recorded under nitrogen-phosphorus combination and promising results were obtained. The weeds and maize benefited equally in terms of fresh and dry weed biomass with an application of fertilizer in particular N singly or together with P. In view of this, application of fertilizer should be changed from broadcast to band and/or placement. In general, a positive interaction was seen between N and P promoting the growth of maize and weeds. It can be said that herbicide application for weed control is important because of the fact that hand weeding is not economical, difficult, time consuming because of perennial weeds and hot weather conditions in the month of June.
    Matched MeSH terms: Weather
  8. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA
    Sensors (Basel), 2021 Feb 18;21(4).
    PMID: 33670675 DOI: 10.3390/s21041428
    The development of the industrial Internet of Things (IIoT) promotes the integration of the cross-platform systems in fog computing, which enable users to obtain access to multiple application located in different geographical locations. Fog users at the network's edge communicate with many fog servers in different fogs and newly joined servers that they had never contacted before. This communication complexity brings enormous security challenges and potential vulnerability to malicious threats. The attacker may replace the edge device with a fake one and authenticate it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC algorithm for efficient encryption keys management and secure communication between the edge nodes and fog node servers to establish secure mutual authentication. The scheme was tested for its security analysis using the formal security verification under the widely accepted AVISPA tool. We proved our scheme using Burrows Abdi Needham's logic (BAN logic) to prove secure mutual authentication. The results show that the SELAMAT scheme provides better security, functionality, communication, and computation cost than the existing schemes.
    Matched MeSH terms: Weather
  9. Kamaruddin FA, Anggraini V, Kim Huat B, Nahazanan H
    Materials (Basel), 2020 Jun 17;13(12).
    PMID: 32560432 DOI: 10.3390/ma13122753
    The durability of natural and treated clay soil stabilized with lime and alkaline activation (AA) affected by environmental factors (hot and humid) was determined in this study. Investigation and evaluation on the strength of the soil, moisture content, and volume change of the specimen were determined at each curing period (7, 28, and 90 days) based on the weather conditions. An unconfined compressive strength (UCS) of the specimen at three different wetting/drying cycles (one, three, and five cycles) was determined. The findings show that the strength of the treated specimens fluctuated with increment and decrement strength (one and three cycles) in the range of 1.41 to 1.88 MPa (lime) and 2.64 to 8.29 MPa (AA), while for five cycles with a curing period of 90 days the decrement was in the range of 1.62 to 1.25 MPa and 6.06 to 5.89 MPa for lime and AA, respectively. The decrement percentage for treated samples that were subjected to five cycles of wetting and drying in 90 days was found to be 20.38% (lime) and 38.64% (AA), respectively. Therefore, it can be summarized that wetting/drying cycles have a significant influence on the durability, strength, and the volume changes of the specimens.
    Matched MeSH terms: Weather
  10. K. Ramesh, P. Ramalakshmi, R. Anitha
    Sains Malaysiana, 2015;44:1389-1396.
    The determination of variance of surface air temperature is very essential since it has a direct impact on vegetation, environment and human livelihood. Forecast of surface air temperature is difficult because of the complex physical phenomenon and the random-like behavior of atmospheric system which influences the temperature event on the earth surface. In this study, forecast models based on artificial neural network (ANN) and genetic programming (GP) approaches were proposed to predict lead seven days minimum and maximum surface air temperature using the weather parameters observed at the station Chennai, India. The outcome of this study stated that models formulated using ANN approach are more accurate than genetic programming for all seven days with the highest coefficient of determination (R2), least mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) on deployment with independent test dataset. ANN models give statistically acceptable mean absolute error of 0.59oC for lead day one in minimum temperature forecast and 0.86oC variance for lead day one in maximum temperature forecast. The study also clarified that the level of accuracy of the proposed prediction models were found to be better for smaller lead days when compared with higher lead days with both approaches.
    Matched MeSH terms: Weather
  11. Jin BL, Jaal Z
    Trop Biomed, 2009 Aug;26(2):140-8.
    PMID: 19901900 MyJurnal
    Changes in the abundance of the house fly, Musca domestica, was studied for a period of one year in two poultry farms in Penang, Malaysia: one in Balik Pulau, located in Penang island, and the other in Juru, located on mainland Penang. The sampling of house flies were carried out from March 2007 to April 2008 using the Scudder grill, and the correlation with meteorological conditions particularly rainfall, relative humidity and temperature were observed. In Balik Pulau, the fly abundance showed an inverse relationship to relative humidity and total rainfall. However, no significant correlations were found between the abundance of flies and the above mentioned climatic factors. In contrast, the occurrence of flies in Juru showed strong correlation indices with relative humidity (r=0.803, p<0.05) and total rainfall (r=0.731, p<0.05). Temperature had no significant effect on the abundance of flies in both poultry farms due to imperceptible changes in monthly temperature.
    Matched MeSH terms: Weather*
  12. Jayaraj VJ, Avoi R, Gopalakrishnan N, Raja DB, Umasa Y
    Acta Trop, 2019 Sep;197:105055.
    PMID: 31185224 DOI: 10.1016/j.actatropica.2019.105055
    Dengue is fast becoming the most urgent health issue in Malaysia, recording close to a 10-fold increase in cases over the last decade. With much uncertainty hovering over the recently introduced tetravalent vaccine and no effective antiviral drugs, vector control remains the most important strategy in combating dengue. This study analyses the relationship between weather predictors including its lagged terms, and dengue incidence in the District of Tawau over a period of 12 years, from 2006 to 2017. A forecasting model purposed to predict future outbreaks in Tawau was then developed using this data. Monthly dengue incidence data, mean temperature, maximum temperature, minimum temperature, mean relative humidity and mean rainfall over a period of 12 years from 2006 to 2017 in Tawau were retrieved from Tawau District Health Office and the Malaysian Meteorological Department. Cross-correlation analysis between weather predictors, lagged terms of weather predictors and dengue incidences established statistically significant cross-correlation between lagged periods of weather predictors-namely maximum temperature, mean relative humidity and mean rainfall with dengue incidence at time lags of 4-6 months. These variables were then employed into 3 different methods: a multivariate Poisson regression model, a Seasonal Autoregressive Integrated Moving Average (SARIMA) model and a SARIMA with external regressors for selection. Three models were selected but the SARIMA with external regressors model utilising maximum temperature at a lag of 6 months (p-value:0.001), minimum temperature at a lag of 4 months (p-value:0.01), mean relative humidity at a lag of 2 months (p-value:0.001), and mean rainfall at a lag of 6 months (p-value:0.001) produced an AIC of 841.94, and a log-likelihood score of -413.97 establishing it as the best fitting model of the methodologies utilised. In validating the models, they were utilised to develop forecasts with the model selected with the highest accuracy of predictions being the SARIMA model predicting 1 month in advance (MAE: 7.032, MSE: 83.977). This study establishes the effect of weather on the intensity and magnitude of dengue incidence as has been previously studied. A prediction model remains a novel method of evidence-based forecasting in Tawau, Sabah. The model developed in this study, demonstrated an ability to forecast potential dengue outbreaks 1 to 4 months in advance. These findings are not dissimilar to what has been previously studied in many different countries- with temperature and humidity consistently being established as powerful predictors of dengue incidence magnitude. When used in prognostication, it can enhance- decision making and allow judicious use of resources in public health setting. Nevertheless, the model remains a work in progress- requiring larger and more diverse data.
    Matched MeSH terms: Weather
  13. Jayaraj VJ, Hoe VCW
    Int J Environ Res Public Health, 2022 Dec 15;19(24).
    PMID: 36554768 DOI: 10.3390/ijerph192416880
    HFMD is a viral-mediated infectious illness of increasing public health importance. This study aimed to develop a forecasting tool utilizing climatic predictors and internet search queries for informing preventive strategies in Sabah, Malaysia. HFMD case data from the Sabah State Health Department, climatic predictors from the Malaysia Meteorological Department, and Google search trends from the Google trends platform between the years 2010-2018 were utilized. Cross-correlations were estimated in building a seasonal auto-regressive moving average (SARIMA) model with external regressors, directed by measuring the model fit. The selected variables were then validated using test data utilizing validation metrics such as the mean average percentage error (MAPE). Google search trends evinced moderate positive correlations to the HFMD cases (r0-6weeks: 0.47-0.56), with temperature revealing weaker positive correlations (r0-3weeks: 0.17-0.22), with the association being most intense at 0-1 weeks. The SARIMA model, with regressors of mean temperature at lag 0 and Google search trends at lag 1, was the best-performing model. It provided the most stable predictions across the four-week period and produced the most accurate predictions two weeks in advance (RMSE = 18.77, MAPE = 0.242). Trajectorial forecasting oscillations of the model are stable up to four weeks in advance, with accuracy being the highest two weeks prior, suggesting its possible usefulness in outbreak preparedness.
    Matched MeSH terms: Weather*
  14. Jasim M. Rajab, Mat Jafri, M.Z, Lim, H.S., Abdullah, K.
    MyJurnal
    Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant. It is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. It is produced by the incomplete combustion of fossil fuels, and biomass burning. The CO data are obtained from Atmospheric Infrared Sounder (AIRS) onboard NASA’s Aqua satellite. The AIRS provides information for several greenhouse gases, CO2, CH4, CO, and O3 as a one goal of the AIRS instrument (included on the EOS Aqua satellite launched, May 4, 2002) as well as to improve weather prediction of the water and energy cycle. The results of the analysis of the retrieved CO total column amount (CO_total_column_A) as well as effective of the CO volume mixing ratio (CO_VMR_eff_A), Level-3 monthly (AIR*3STM) 1º*1º spatial resolution, ascending are used to study the CO distribution over the East and West Malaysia for the year 2003. The CO maps over the study area were generated by using Kriging Interpolation technique and analyzed by using Photoshop CS. Variations in the biomass burning and the CO emissions where noted, while the highest CO occurred at late dry season in the region which has experienced extensive biomass burning and greater draw down of CO occurred in the pristine continental environment (East Malaysia). In all cases, the CO concentration at West Malaysia is higher than East Malaysia. The southeastern Sarawak (lat. 3.5˚ - long. 115.5˚) is less polluted regions and less the CO in most of times in the year. Examining satellite measurements revealed that the enhanced CO emission correlates with occasions of less rainfall during the dry season.
    Matched MeSH terms: Weather
  15. Izadi M, Abd Rahman MS, Ab-Kadir MZ, Gomes C, Jasni J, Hajikhani M
    PLoS One, 2017;12(2):e0172118.
    PMID: 28234930 DOI: 10.1371/journal.pone.0172118
    Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.
    Matched MeSH terms: Weather
  16. Ismail A, Rahman F
    Trop Life Sci Res, 2013 Aug;24(1):1-7.
    PMID: 24575237 MyJurnal
    Environmental factors can play important roles in influencing waterbird communities. In particular, weather may have various biological and ecological impacts on the breeding activities of waterbirds, though most studies have investigated the effect of weather on the late stages of waterbird breeding (e.g., hatching rate, chick mortality). Conversely, the present study attempts to highlight the influence of weather on the early nesting activities of waterbirds by evaluating a recently established mixed-species colony in Putrajaya Wetlands, Malaysia. The results show that only rainfall and temperature have a significant influence on the species' nesting activities. Rainfall activity is significantly correlated with the Grey Heron's rate of establishment (rainfall: rs = 0.558, p = 0.03, n = 72) whereas both temperature and rainfall are associated with Painted Stork's nesting density (temperature: rs = 0.573, p = 0.013; rainfall: rs = -0.662, p = 0.03, n = 48). There is a possibility that variations in the rainfall and temperature provide a cue for the birds to initiate their nesting. Regardless, this paper addresses concerns on the limitations faced in the study and suggests long-term studies for confirmation.
    Matched MeSH terms: Weather
  17. Idris A.B., Norhayati Abdul Mukti
    Resistance of diamondback moth (DBM), Plutella xylostela (L), to coventional pesticides and concerns about environmental quality have lead to increased worldwide efforts to develop viable biocontrol methods for DBM. The success of using parasitoids, especially larval parasitoids like Diadegma, Cotesia and Microplitis species for controlling DBM have been reported in several countries. These larval parasitoids of DBM are commonly found in the field. Diadegma semiclausum (=eucerophaga) Hellen is the major parasitoid of DBM in Europe and Asia, while Diadegma insulare (Cresson) are predominates in the Americas. To date, the bacterium, Bacillus thuringiensis Berliner subspecies kurstaki, has been the most widely used DBM pathogen. Although it is environment friendly pesticides, its effectiveness always vary with weather, field location and frequency of application per season. These are the main factors that contribute to the slow acceptance of B.thuringiensis by the cabbage growers worldwide. Because of this many studies have been done to improve its efficacay and persistence in the field. This paper provides an overview of the current status of these agents for use in controlling DBM and suggest research that is needed to improve the usefulness of these biocontrol agents and to maximize their impact on the DBM management in the future.
    Ketahanan rama-rama belakang-intan (diamondback moth), Plutella xylostella (L.), kepada semua racun-racun perosak yang biasa digunakan untuk mengawalnya dan keprihatinan terhadap kualiti alam sekitar telah menyebabkan bertambahnya usaha mencari beberapa kaedah kawalan biologi rama-rama ini di seluruh dunia. Kejayaan menggunakan parasitoids, terutamanya parasitoid larva seperti spesies Diadegma, Cotesia dan Microplitis bagi kawalan serangga ini telah dilaporkan oleh beberapa negara. Parasitoid-parasitoid larva ini mudah didapati di lapangan. Diadegma semiclausum (=eucerophaga) Hellen adalah merupakan parasitoid utama di Eropah dan Asia, sementara Diadegma insulare (Cresson) predominen di benua America. Sehingga kini, bakteria Bacillus thuringiensis Berliner subspesies kurstaki, adalah sejenis patogen serangga yang digunakan secara meluas untuk mengawal rama-rama tersebut. Walaupun B. thuringiensis adalah sejenis racun makhluk perosak yang tidak mencemari alam sekitar, tahap keberkesanan tindakannya adalah kerap berubah-ubah mengikut perubahan cuaca, lokasi lapangan dan kekerapan penggunaannya. Ini adalah merupakan faktor-faktor penting yang menyebabkan kelambatan penerimaannya oleh penanam-penanam kobis di merata dunia. Oleh sebab inilah banyak kajian telah dan sedang dijalankan bagi memperbaiki tahap keberkesanan dan persistentnya di lapangan. Kertas ini disedia bagi memperihalkan status penggunaan kedua-dua jenis agen kawalan biologi disamping mengesyurkan penyelidikan yang perlu dibuat untuk mempertingkatkan kegunaan dan memaksimumkan dampaknya dalam pengurusan rama-rama ini masa akan datang.
    Matched MeSH terms: Weather
  18. Humada AM, Hojabri M, Sulaiman MH, Hamada HM, Ahmed MN
    PLoS One, 2016;11(4):e0152766.
    PMID: 27035575 DOI: 10.1371/journal.pone.0152766
    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
    Matched MeSH terms: Weather
  19. Huat, Bujang B.K, Faisal AIi, Choong, Foong Heng
    MyJurnal
    Residual soils occur in most countries of the world but the greater areas and depths are normally found in tropical humid areas. In these places, the soil forming processes are still very active and the weathering is much faster than the erosive factor. Most residual exhibit high soil suctions for most of the year. The absence of positive pore water pressure except immediately after rain, renders conventional soil mechanics for saturated soil irrelevant. In particular, the effective stress theories of saturated soil are not applicable at the practical leve l. Ignorance or lack of understanding of the geotechnical behavior of soil in the partially or unsaturated state has caused a lot of damages to infrastructures, buildings and other structures. For instances, the collapsibility and volume change of partially saturated soils in connection with the drying or wetting causes a lot of damage to foundation, roads and other structures. As such, the development of extended soil mechanics, which embraces the soil in the unsaturated state or subjected to soil suction, is essential. This paper examines the collapsibility and volume change behavior specifically of an unsaturated residual soil under various levels of applied matric suction (u -u ), and net mean stress (a-u) in a predetermined stress path. The volume change of ;he"' soil is found to be sensitive to both the applied matric suction and net mean stress. The soil is found to exhibit a collapsibility behavior upon a reduction in applied matric suction to 25 kPa at constant net mean stress.
    Matched MeSH terms: Weather
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links