Displaying publications 61 - 80 of 417 in total

Abstract:
Sort:
  1. Hia IL, Pasbakhsh P, Chan ES, Chai SP
    Sci Rep, 2016 10 03;6:34674.
    PMID: 27694922 DOI: 10.1038/srep34674
    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
    Matched MeSH terms: Wound Healing
  2. Kardia E, Mohamed R, Yahaya BH
    Sci Rep, 2017 09 15;7(1):11732.
    PMID: 28916766 DOI: 10.1038/s41598-017-11992-6
    Airway stem/progenitor epithelial cells (AECs) are notable for their differentiation capacities in response to lung injury. Our previous finding highlighted the regenerative capacity of AECs following transplantation in repairing tracheal injury and reducing the severity of alveolar damage associated acute lung injury in a rabbit model. The goal of this study is to further investigate the potential of AECs to re-populate the tracheal epithelium and to study their stimulatory effect on inhibiting pro-inflammatory cytokines, epithelial cell migration and proliferation, and epithelial-to-mesenchymal transition (EMT) process following tracheal injury. Two in vitro culture assays were applied in this study; the direct co-culture assay that involved a culture of decellularised tracheal epithelium explants and AECs in a rotating tube, and indirect co-culture assay that utilized microporous membrane-well chamber system to separate the partially decellularised tracheal epithelium explants and AEC culture. The co-culture assays provided evidence of the stimulatory behaviour of AECs to enhance tracheal epithelial cell proliferation and migration during early wound repair. Factors that were secreted by AECs also markedly suppressed the production of IL-1β and IL-6 and initiated the EMT process during tracheal remodelling.
    Matched MeSH terms: Wound Healing*
  3. Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI
    Sci Rep, 2018 02 13;8(1):2875.
    PMID: 29440678 DOI: 10.1038/s41598-018-21174-7
    Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.
    Matched MeSH terms: Wound Healing*
  4. Asiri A, Saidin S, Sani MH, Al-Ashwal RH
    Sci Rep, 2021 Mar 11;11(1):5634.
    PMID: 33707606 DOI: 10.1038/s41598-021-85149-x
    In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
    Matched MeSH terms: Wound Healing/drug effects
  5. Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, et al.
    Sci Rep, 2020 02 24;10(1):3307.
    PMID: 32094395 DOI: 10.1038/s41598-020-60364-0
    Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
    Matched MeSH terms: Wound Healing*
  6. El-Ferjani RM, Ahmad M, Dhiyaaldeen SM, Harun FW, Ibrahim MY, Adam H, et al.
    Sci Rep, 2016 Dec 13;6:38748.
    PMID: 27958299 DOI: 10.1038/srep38748
    Co (II) complex (CMLA) was investigated to evaluate the rate of wound healing in rats. Animals were placed into four groups: gum acacia, Intrasite gel, 10 and 20 mg/ml of CMLA. Wounds were made on the dorsal neck area, then treated with Intrasite gel or CMLA; both of these treatments led to faster healing than with gum acacia. Histology of the wounds dressed with CMLA or Intrasite gel displayed a smaller scar width, required less time to heal and showed more collagen staining and fewer inflammatory cells in comparison to wounds dressed with the vehicle. Immunohistochemistry for Hsp70 and TGF-β showed greater staining intensity in the treated groups compared to the vehicle group. Bax staining was less intense in treated groups compared to the vehicle group, suggesting that CMLA and Intrasite gel provoked apoptosis, responsible for the development of granulation tissue into a scar. CD31 protein analysis showed that the treated groups enhanced angiogenesis and increased vascularization compared to the control group. Furthermore, a significant increase in the levels of GPx and SOD and a decrease in MDA were also observed in the treated groups. This results suggest that CMLA is a potentially promising agent for the wounds treatment.
    Matched MeSH terms: Wound Healing/drug effects*
  7. Muhamad Hafizuddin Mohamad Basir, Bulan Abdullah, Siti Khadijah Alias
    MyJurnal
    This research investigates and analyzes wear properties of 316 stainless steel before and after applying paste boronizing process and to investigate the effect of shot blasting process in enhancing boron dispersion into the steel. In order to enhance the boron dispersion into 316 stainless steel, surface deformation method by shot blasting process was deployed. Boronizing treatment was conducted using paste medium for 8 hours under two different temperatures which were 8500 C and 9500 C. Wear behaviour was evaluated using pin-on-disc test for abrasion properties. The analysis on microstructure, X-ray Diffraction (XRD) and density were also carried out before and after applying boronizing treatment. Boronizing process that had been carried out on 316 stainless steel increases the wear resistance of the steel compared to the unboronized 316 stainless steel. The effect of boronizing treatment together with the shot blasting process give a greater impact in increasing the wear resistance of 316 stainless steel. This is mainly because shot blasted samples initiated surface deformation that helped more boron dispersion due to dislocation of atom on the deformed surface. Increasing the boronizing temperature also increases the wear resistance of 316 stainless steel. In industrial application, the usage of the components that have been fabricated using the improved 316 stainless steel can be maximized because repair and replacement of the components can be reduced as a result of improved wear resistance of the 316 stainless steel.
    Matched MeSH terms: Wound Healing
  8. Nor Azlan AYH, Katas H, Habideen NH, Mh Busra MF
    Saudi Pharm J, 2020 Nov;28(11):1420-1430.
    PMID: 33250649 DOI: 10.1016/j.jsps.2020.09.007
    Diabetic wounds are difficult to treat due to multiple causes, including reduced blood flow and bacterial infections. Reduced blood flow is associated with overexpression of prostaglandin transporter (PGT) gene, induced by hyperglycaemia which causing poor vascularization and healing of the wound. Recently, gold nanoparticles (AuNPs) have been biosynthesized using cold and hot sclerotium of Lignosus rhinocerotis extracts (CLRE and HLRE, respectively) and capped with chitosan (CS) to produce biocompatible antibacterial nanocomposites. The AuNPs have shown to produce biostatic effects against selected gram positive and negative bacteria. Therefore, in this study, a dual therapy for diabetic wound consisting Dicer subtract small interfering RNA (DsiRNA) and AuNPs was developed to improve vascularization by inhibiting PGT gene expression and preventing bacterial infection, respectively. The nanocomposites were incorporated into thermoresponsive gel, made of pluronic and polyethylene glycol. The particle size of AuNPs synthesized using CLRE (AuNPs-CLRE) and HLRE (AuNPs-HLRE) was 202 ± 49 and 190 ± 31 nm, respectively with positive surface charge (+30 to + 45 mV). The thermoresponsive gels containing DsiRNA-AuNPs gelled at 32 ± 1 °C and released the active agents in sufficient amount with good texture and rheological profiles for topical application. DsiRNA-AuNPs and those incorporated into thermoresponsive pluronic gels demonstrated high cell viability, proliferation and cell migration rate via in vitro cultured cells of human dermal fibroblasts, indicating their non-cytotoxicity and wound healing properties. Taken together, the thermoresponsive gels are expected to be useful as a potential dressing that promotes healing of diabetic wounds.
    Matched MeSH terms: Wound Healing
  9. Md Jamil M, Jones F, Muhamad N, Makenan S
    Sains Malaysiana, 2015;44:843-852.
    A clear understanding on the fundamental mechanism in solid state self-healing resin system might significantly improve the optimization of healing performance. The focus of this study was to prove the diffusion (through thermal inter-diffusion) of a linear healing agent within the network matrix resin. The results had demonstrated that 45 to 21 percentage recoveries in fracture toughness (K1C) were observed within the third healing cycles of the healable resin. Based on the optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIM) analyst; the diffusion of healing agent was also demonstrated by the change in the morphology and chemical images of the healing agent on the fracture surface specimen, before and after healing process.
    Matched MeSH terms: Wound Healing
  10. Abid Nordin, Shiplu Roy Chowdhury, Ruszymah Idrus, Aminuddin Saim
    Sains Malaysiana, 2018;47:2463-2471.
    Skin wound healing is a complex physiological event, involving many cellular and molecular components. The event of
    wound healing is the coordinated overlap of a number of distinct phases, namely haemostasis, inflammatory, proliferative
    and remodelling. The molecular events surrounding wound healing, particularly the reepithelialisation, has been reported
    to be similar to the epithelial to mesenchymal transition (EMT). In this review, the mechanism between epithelialisation
    and EMT were compared. Both are characterised by the loss of epithelial integrity and increased motility. In terms of
    the signalling kinases, Smad and mitogen-activated protein kinase (MAPK) has been reported to be involved in both
    reepithelialisation and EMT. At the transcriptional level, SLUG transcription factor has been reported to be important for
    both reepithelialisation and EMT. Extracellular matrix proteins that have been associated with both events are collagen
    and laminin. Lastly, both events required the interplay between matrix metalloproteinases (MMPs) and its inhibitor. As a
    conclusion, both reepithelialisation and EMT shares similar signaling cascade and transcriptional regulation to exhibit
    decreased epithelial traits and increased motility in keratinocytes.
    Matched MeSH terms: Wound Healing
  11. Tai L, Saffery NS, Chin SP, Cheong SK
    Regen Med, 2023 Nov;18(11):839-856.
    PMID: 37671699 DOI: 10.2217/rme-2023-0085
    Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
    Matched MeSH terms: Wound Healing
  12. Benhanifia MB, Boukraâ L, Hammoudi SM, Sulaiman SA, Manivannan L
    PMID: 21171951
    Topical application of honey to burn and wounds has been found to be effective in controlling infection and producing a clean granulating bed. It is suggested that the wound healing effect of honey may in part be related to the release of inflammatory cytokines from surrounding tissue cells, mainly monocytes and macrophages. It has been reported that honey hastens wound healing by accelerating wound contractions. Microscopic evaluation demonstrated that there was a significant acceleration of dermal repair in wound treated with honey. Macroscopic and microscopic observations under in vivo assessment suggested that the topical application of honey might have favourable influences on the various phases of burn and wound healing hence accelerating the healing process. The regulatory effects of honey are related to components other than the sugars. However, the mechanisms by which honey affects the release of anti inflammatory agents and growth factors from monocytic cells are as yet unclear. Whether honey affects other cell types, particularly endothelial cells and fibroblasts, involved in wound healing also needs to be clarified. The present article is a short review of recent patents on the healing effect of honey in wound and burn management.
    Matched MeSH terms: Wound Healing/drug effects*
  13. Kwan SH, Abdul Aziz NHK, Ismail MN
    Protein Pept Lett, 2020;27(1):48-59.
    PMID: 31362651 DOI: 10.2174/0929866526666190730121711
    BACKGROUND: Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound.

    OBJECTIVE: To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion.

    MATERIAL AND METHODS: Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification.

    RESULTS: Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism.

    CONCLUSIONS: The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.

    Matched MeSH terms: Wound Healing/drug effects*
  14. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p wound healing properties via direct inhibition of S. aureus and promoted innate immunity, in which the expression of β-defensin was significantly (p wound recovery. Using ∆atl S. aureus, the protein-rich fraction from L. plantarum USM8613 exerted inhibitory activity via targeting the atl gene in S. aureus. Taken altogether, our present study illustrates the potential of L. plantarum USM8613 in aiding wound healing, suppressing of S. aureus infection at wound sites and promoting host innate immunity.
    Matched MeSH terms: Wound Healing/drug effects
  15. Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933133 DOI: 10.3390/polym12092081
    Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
    Matched MeSH terms: Wound Healing
  16. N Amirrah I, Mohd Razip Wee MF, Tabata Y, Bt Hj Idrus R, Nordin A, Fauzi MB
    Polymers (Basel), 2020 Sep 22;12(9).
    PMID: 32972012 DOI: 10.3390/polym12092168
    Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies (n) identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide (n = 2), gentamicin (n = 3), combined-cellulose and silver (n = 1), gentian violet/methylene blue mixed (n = 1), and silver (n = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.
    Matched MeSH terms: Wound Healing
  17. Maarof M, Mohd Nadzir M, Sin Mun L, Fauzi MB, Chowdhury SR, Idrus RBH, et al.
    Polymers (Basel), 2021 Feb 08;13(4).
    PMID: 33567703 DOI: 10.3390/polym13040508
    The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen-hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
    Matched MeSH terms: Wound Healing
  18. Jaganathan SK, Mani MP, Khudzari AZM
    Polymers (Basel), 2019 Apr 01;11(4).
    PMID: 30960571 DOI: 10.3390/polym11040586
    The ultimate goal in tissue engineering is to fabricate a scaffold which could mimic the native tissue structure. In this work, the physicochemical and biocompatibility properties of electrospun composites based on polyurethane (PU) with added pepper mint (PM) oil and copper sulphate (CuSO₄) were investigated. Field Emission Electron microscope (FESEM) study depicted the increase in mean fiber diameter for PU/PM and decrease in fiber diameter for PU/PM/CuSO₄ compared to the pristine PU. Fourier transform infrared spectroscopy (FTIR) analysis revealed the formation of a hydrogen bond for the fabricated composites as identified by an alteration in PU peak intensity. Contact angle analysis presented the hydrophobic nature of pristine PU and PU/PM while the PU/PM/CuSO₄ showed hydrophilic behavior. Atomic force microscopy (AFM) analysis revealed the increase in the surface roughness for the PU/PM while PU/PM/CuSO₄ showed a decrease in surface roughness compared to the pristine PU. Blood compatibility studies showed improved blood clotting time and less toxic behavior for the developed composites than the pristine PU. Finally, the cell viability of the fabricated composite was higher than the pristine PU as indicated in the MTS assay. Hence, the fabricated wound dressing composite based on PU with added PM and CuSO₄ rendered a better physicochemical and biocompatible nature, making it suitable for wound healing applications.
    Matched MeSH terms: Wound Healing
  19. Yahaya B, McLachlan G, McCorquodale C, Collie D
    PLoS One, 2013;8(4):e58930.
    PMID: 23593124 DOI: 10.1371/journal.pone.0058930
    BACKGROUND: Understanding the way in which the airway heals in response to injury is fundamental to dissecting the mechanisms underlying airway disease pathology. As only limited data is available in relation to the in vivo characterisation of the molecular features of repair in the airway we sought to characterise the dynamic changes in gene expression that are associated with the early response to physical injury in the airway wall.

    METHODOLOGY/PRINCIPAL FINDINGS: We profiled gene expression changes in the airway wall using a large animal model of physical injury comprising bronchial brush biopsy in anaesthetised sheep. The experimental design featured sequential studies in the same animals over the course of a week and yielded data relating to the response at 6 hours, and 1, 3 and 7 days after injury. Notable features of the transcriptional response included the early and sustained preponderance of down-regulated genes associated with angiogenesis and immune cell activation, selection and differentiation. Later features of the response included the up-regulation of cell cycle genes at d1 and d3, and the latter pronounced up-regulation of extracellular matrix-related genes at d3 and d7.

    CONCLUSIONS/SIGNIFICANCE: It is possible to follow the airway wall response to physical injury in the same animal over the course of time. Transcriptional changes featured coordinate expression of functionally related genes in a reproducible manner both within and between animals. This characterisation will provide a foundation against which to assess the perturbations that accompany airway disease pathologies of comparative relevance.

    Matched MeSH terms: Wound Healing/genetics*
  20. Abu Bakar MR, Abdul Kadir A, Abdul Wahab SZ, Abdul Karim AH, Nik Hussain NH, Mohd Noor N, et al.
    PLoS One, 2015;10(7):e0133514.
    PMID: 26222158 DOI: 10.1371/journal.pone.0133514
    AIM: To compare the mean of anteroposterior (AP) measurements of the uterus in longitudinal and oblique transverse planes, and the pulsatility index (PI) and resistive index (RI) of the uterine artery and superficial skin wound artery between patients taking Channa striatus and placebo.

    BACKGROUND: Channa striatus, also known as haruan, is a fresh water snakehead fish consumed in many parts of Southeast Asia. Channa striatus is also normally consumed by women postpartum to promote wound healing as well as to reduce post-operative pain.

    METHODOLOGY: This study is a randomised, double blind, placebo-controlled study conducted in women after Lower Segment Caesarean Section (LSCS). Subjects were randomised to either a Channa striatus or a placebo group and were given a daily dosage of 500 mg of Channa striatus extract or 500 mg maltodextrin, respectively, for six weeks post LSCS. The anteroposterior measurements of the uterus in the longitudinal and oblique transverse planes, and the pulsatility index (PI) and resistive index (RI) of the uterine and superficial skin wound arteries were assessed using pelvic Gray-scale ultrasound and Doppler ultrasound at baseline (Day 3) and at two weeks, four weeks and six weeks post-operatively.

    RESULTS: Sixty-six subjects were randomised into the study with 33 in the Channa striatus group and 33 in the placebo group. No significant differences were detected in terms of the pulsatility index (PI) and the resistive index (RI) of the uterine and superficial skin wound arteries between the Channa striatus and placebo groups. However, in the Channa striatus group, the AP measurements of the uterus on the longitudinal and oblique transverse planes were significantly lower compared to the placebo group (p<0.05 and p<0.001, respectively).

    CONCLUSION: Daily intake of Channa striatus extract results in marked differences compared to placebo in terms of uterine involution and recovery in women post LSCS.

    TRIAL REGISTRATION: www.isrctn.com 11960786.

    Matched MeSH terms: Wound Healing/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links