Displaying publications 61 - 80 of 124 in total

Abstract:
Sort:
  1. Rezvanian M, Amin MCIM, Ng SF
    Carbohydr Polym, 2016 Feb 10;137:295-304.
    PMID: 26686133 DOI: 10.1016/j.carbpol.2015.10.091
    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
    Matched MeSH terms: Wound Healing/drug effects
  2. Sefat F, Youseffi M, Khaghani SA, Soon CF, Javid F
    Cytokine, 2016 07;83:118-126.
    PMID: 27108397 DOI: 10.1016/j.cyto.2016.04.008
    Articular cartilage is an avascular and flexible connective tissue found in joints. It produces a cushioning effect at the joints and provides low friction to protect the ends of the bones from wear and tear/damage. It has poor repair capacity and any injury can result pain and loss of mobility. Transforming growth factor-beta (TGF-β), a cytokine superfamily, regulates cell function, including differentiation and proliferation. Although the function of the TGF-βs in various cell types has been investigated, their function in cartilage repair is as yet not fully understood. The effect of TGF-β3 in biological regulation of primary chondrocyte was investigated in this work. TGF-β3 provided fibroblastic morphology to chondrocytes and therefore overall reduction in cell proliferation was observed. The length of the cells supplemented with TGF-β3 were larger than the cells without TGF-β3 treatment. This was caused by the fibroblast like cells (dedifferentiated chondrocytes) which occupied larger areas compared to cells without TGF-β3 addition. The healing process of the model wound closure assay of chondrocyte multilayer was slowed down by TGF-β3, and this cytokine negatively affected the strength of chondrocyte adhesion to the cell culture surface.
    Matched MeSH terms: Wound Healing/drug effects*
  3. Abd Ghafar N, Ker-Woon C, Hui CK, Mohd Yusof YA, Wan Ngah WZ
    BMC Complement Altern Med, 2016 Jul 29;16:259.
    PMID: 27473120 DOI: 10.1186/s12906-016-1248-0
    BACKGROUND: The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts.

    METHODS: Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively.

    RESULTS: Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses.

    CONCLUSION: These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.

    Matched MeSH terms: Wound Healing/drug effects*
  4. Lai JC, Lai HY, Nalamolu KR, Ng SF
    J Ethnopharmacol, 2016 08 02;189:277-89.
    PMID: 27208868 DOI: 10.1016/j.jep.2016.05.032
    ETHNOPHARMACOLOGICAL RELEVANCE: Blechnum orientale Linn. (B. orientale) is a fern traditionally used by the natives as a poultice to treat wounds, boils, ulcers, blisters, abscesses, and sores on the skin.

    AIM OF THE STUDY: To investigate the wound healing ability of a concentrated extract of B. orientale in a hydrogel formulation in healing diabetic ulcer wounds.

    MATERIALS AND METHODS: The water extract from the leaves of B. orientale was separated from the crude methanolic extract and subjected to flash column chromatography techniques to produce concentrated fractions. These fractions were tested for phytochemical composition, tannin content, antioxidative and antibacterial activity. The bioactive fraction was formulated into a sodium carboxymethylcellulose hydrogel. The extract-loaded hydrogels were then characterized and tested on excision ulcer wounds of streptozotocin-induced diabetic rats. Wound size was measured for 14 days. Histopathological studies were conducted on the healed wound tissues to observe for epithelisation, fibroblast proliferation and angiogenesis. All possible mean values were subjected to statistical analysis using One-way ANOVA and post-hoc with Tukey's T-test (P<0.05).

    RESULTS: One fraction exhibited strong antioxidative and antibacterial activity. The fraction was also highly saturated with tannins, particularly condensed tannins. Fraction W5-1 exhibited stronger antioxidant activity compared to three standards (α-Tocopherol, BHT and Trolox-C). Antibacterial activity was also present, and notably bactericidal towards Methicillin-resistant Staphylococcus aureus (MRSA) at 0.25mg/ml. The extract-loaded hydrogels exhibited shear-thinning properties, with high moisture retention ability. The bioactive fraction at 4% w/w was shown to be able to close diabetic wounds by Day 12 on average. Other groups, including controls, only exhibited wound closure by Day 14 (or not at all). Histopathological studies had also shown that extract-treated wounds exhibited re-epithelisation, higher fibroblast proliferation, collagen synthesis, and angiogenesis.

    CONCLUSION: The ethnopharmacological effects of using B. orientale as a topical treatment for external wounds was validated and was also significantly effective in treating diabetic ulcer wounds. Thus, B. orientale extract hydrogel may be presented as a potential treatment for diabetic ulcer wounds.

    Matched MeSH terms: Wound Healing/drug effects*
  5. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA
    Mater Sci Eng C Mater Biol Appl, 2016 Sep 01;66:147-155.
    PMID: 27207048 DOI: 10.1016/j.msec.2016.03.102
    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.
    Matched MeSH terms: Wound Healing/drug effects
  6. El-Ferjani RM, Ahmad M, Dhiyaaldeen SM, Harun FW, Ibrahim MY, Adam H, et al.
    Sci Rep, 2016 Dec 13;6:38748.
    PMID: 27958299 DOI: 10.1038/srep38748
    Co (II) complex (CMLA) was investigated to evaluate the rate of wound healing in rats. Animals were placed into four groups: gum acacia, Intrasite gel, 10 and 20 mg/ml of CMLA. Wounds were made on the dorsal neck area, then treated with Intrasite gel or CMLA; both of these treatments led to faster healing than with gum acacia. Histology of the wounds dressed with CMLA or Intrasite gel displayed a smaller scar width, required less time to heal and showed more collagen staining and fewer inflammatory cells in comparison to wounds dressed with the vehicle. Immunohistochemistry for Hsp70 and TGF-β showed greater staining intensity in the treated groups compared to the vehicle group. Bax staining was less intense in treated groups compared to the vehicle group, suggesting that CMLA and Intrasite gel provoked apoptosis, responsible for the development of granulation tissue into a scar. CD31 protein analysis showed that the treated groups enhanced angiogenesis and increased vascularization compared to the control group. Furthermore, a significant increase in the levels of GPx and SOD and a decrease in MDA were also observed in the treated groups. This results suggest that CMLA is a potentially promising agent for the wounds treatment.
    Matched MeSH terms: Wound Healing/drug effects*
  7. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Ibrahim OE, Daher AM
    Curr Pharm Des, 2016;22(16):2403-10.
    PMID: 27139374
    OBJECTIVES: -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat.

    MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers.

    RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3).

    CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.

    Matched MeSH terms: Wound Healing/drug effects*
  8. Teo SY, Yew MY, Lee SY, Rathbone MJ, Gan SN, Coombes AGA
    J Pharm Sci, 2017 01;106(1):377-384.
    PMID: 27522920 DOI: 10.1016/j.xphs.2016.06.028
    Phenytoin-loaded alkyd nanoemulsions were prepared spontaneously using the phase inversion method from a mixture of novel biosourced alkyds and Tween 80 surfactant. Exposure of human adult keratinocytes (HaCaT cells) for 48 h to alkyd nanoemulsions producing phenytoin concentrations of 3.125-200 μg/mL resulted in relative cell viability readings using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide of 100% confirming nontoxicity and suggesting cell proliferation activity. Phenytoin-loaded alkyd nanoemulsions generally resulted in higher mean cell viability compared with equivalent concentration of phenytoin solutions, suggesting that the nanoemulsions provided a controlled-release property that maintained the optimum phenytoin level for keratinocyte growth. HaCaT cell proliferation, measured by 5-bromo-2-deoxyuridine uptake, was found to increase following exposure to increasing phenytoin concentration from 25 to 50 μg/mL in solution or encapsulated in nanoemulsions but declined at a drug concentration of 100 μg/mL. An in vitro cell monolayer wound scratch assay revealed that phenytoin solution or nanoemulsions producing 50 μg/mL phenytoin concentration resulted in 75%-82% "scratch closure" after 36 h, similar to medium containing 10% fetal bovine serum as a cell growth promoter. These findings indicate that phenytoin-loaded alkyd nanoemulsions show potential for promoting topical wound healing through enhanced proliferation of epidermal cells.
    Matched MeSH terms: Wound Healing/drug effects*
  9. Al-Khayal K, Alafeefy A, Vaali-Mohammed MA, Mahmood A, Zubaidi A, Al-Obeed O, et al.
    BMC Cancer, 2017 01 03;17(1):4.
    PMID: 28049506 DOI: 10.1186/s12885-016-3005-7
    BACKGROUND: Colorectal cancer (CRC) is the 3(rd) most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.

    METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.

    RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.

    CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.

    Matched MeSH terms: Wound Healing/drug effects
  10. Pandey M, Mohamad N, Low WL, Martin C, Mohd Amin MC
    Drug Deliv Transl Res, 2017 02;7(1):89-99.
    PMID: 27815776 DOI: 10.1007/s13346-016-0341-8
    Burn wound management is a complex process because the damage may extend as far as the dermis which has an acknowledged slow rate of regeneration. This study investigates the feasibility of using hydrogel microparticles composed of bacterial cellulose and polyacrylamide as a dressing material for coverage of partial-thickness burn wounds. The microparticulate carrier structure and surface morphology were investigated by Fourier transform infrared, X-ray diffraction, elemental analysis, and scanning electron microscopy. The cytotoxicity profile of the microparticles showed cytocompatibility with L929 cells. Dermal irritation test demonstrated that the hydrogel was non-irritant to the skin and had a significant effect on wound contraction compared to the untreated group. Moreover, histological examination of in vivo burn healing samples revealed that the hydrogel treatment enhanced epithelialization and accelerated fibroblast proliferation with wound repair and intact skin achieved by the end of the study. Both the in vitro and in vivo results proved the biocompatibility and efficacy of hydrogel microparticles as a wound dressing material.
    Matched MeSH terms: Wound Healing/drug effects
  11. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
    Matched MeSH terms: Wound Healing/drug effects*
  12. Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B, Seyed MA
    Mol Med Rep, 2017 Mar;15(3):1007-1016.
    PMID: 28112383 DOI: 10.3892/mmr.2017.6133
    The study of wound‑healing plants has acquired an interdisciplinary nature with a systematic investigational approach. Several biochemicals are involved in the healing process of the body, including antioxidants and cytokines. Although several pharmaceutical preparations and formulations are available for wound care and management, it remains necessary to search for efficacious treatments, as certain current formulations cause adverse effects or lack efficacy. Phytochemicals or biomarkers from numerous plants suggest they have positive effects on different stages of the wound healing process via various mechanisms. Several herbal medicines have displayed marked activity in the management of wounds and various natural compounds have verified in vivo wound healing potential, and can, therefore, be considered as potential drugs of natural origin. Chromolaena odorata (L.) R.M. King and H. Robinson is considered a tropical weed. However, it exhibits anti‑inflammatory, antipyretic, analgesic, antimicrobial, cytotoxic and numerous other relevant medicinal properties on an appreciable scale, and is known in some parts of the world as a traditional medicine used to treat various ailments. To understand its specific role as nature's gift for healing wounds and its contribution to affordable healthcare, this plant must be scientifically assessed based on the available literature. This review aims to summarize the role of C. odorata and its biomarkers in the wound healing activities of biological systems, which are crucial to its potential future drug design, development and application for the treatment of wounds.
    Matched MeSH terms: Wound Healing/drug effects
  13. Lau P, Bidin N, Islam S, Shukri WNBWM, Zakaria N, Musa N, et al.
    Lasers Surg Med, 2017 04;49(4):380-386.
    PMID: 27859389 DOI: 10.1002/lsm.22614
    BACKGROUND AND OBJECTIVE: The aim of this study is to investigate the effect of gold nanoparticles (AuNPs) in photobiomodulation therapy (PBMT) on wound healing process.

    MATERIALS AND METHODS: AuNPs are synthesized by Q-switched Nd:YAG laser ablation technique. Cutaneous wound are induced on 45 Sprague Dawley rats on its dorsal part and then randomly divided into three groups. One group serves as non-treatment group (GC) and another two groups are subjected to AuNPs with and without PBMT. About 808 nm diode laser with output power of 100 mW is used as a light source for PBMT. The treatment was carried out daily with exposure duration of 50 seconds and total fluence of 5 J/cm2 . Wound area is monitored for 9 consecutive days using a digital camera, and histological examination is performed at 3rd, 6th, and 9th day through hematoxylin and eosin stain as well as Masson's trichrome stain.

    RESULTS: The group of rats subjected to AuNPs with PBMT shows significantly accelerated wound closure compared to other groups. Histological results indicate that AuNPs and PBMT group is more effective in stimulating angiogenesis and triggers inflammatory response at early stage.

    CONCLUSION: The application of AuNPs in PBMT has potential to accelerate wound healing due to enhanced epithelialization, collagen deposition and fast vascularization. Lasers Surg. Med. 49:380-386, 2017. © 2016 Wiley Periodicals, Inc.

    Matched MeSH terms: Wound Healing/drug effects*
  14. Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon JK, Wa CTC, Villa MA
    Int J Surg, 2017 Aug;44:260-268.
    PMID: 28648795 DOI: 10.1016/j.ijsu.2017.06.073
    BACKGROUND: Of the many antimicrobial agents available, iodophore-based formulations such as povidone iodine have remained popular after decades of use for antisepsis and wound healing applications due to their favorable efficacy and tolerability. Povidone iodine's broad spectrum of activity, ability to penetrate biofilms, lack of associated resistance, anti-inflammatory properties, low cytotoxicity and good tolerability have been cited as important factors, and no negative effect on wound healing has been observed in clinical practice. Over the past few decades, numerous reports on the use of povidone iodine have been published, however, many of these studies are of differing design, endpoints, and quality. More recent data clearly supports its use in wound healing.

    METHODS: Based on data collected through PubMed using specified search criteria based on above topics and clinical experience of the authors, this article will review preclinical and clinical safety and efficacy data on the use of povidone iodine in wound healing and its implications for the control of infection and inflammation, together with the authors' advice for the successful treatment of acute and chronic wounds.

    RESULTS AND CONCLUSION: Povidone iodine has many characteristics that position it extraordinarily well for wound healing, including its broad antimicrobial spectrum, lack of resistance, efficacy against biofilms, good tolerability and its effect on excessive inflammation. Due to its rapid, potent, broad-spectrum antimicrobial properties, and favorable risk/benefit profile, povidone iodine is expected to remain a highly effective treatment for acute and chronic wounds in the foreseeable future.

    Matched MeSH terms: Wound Healing/drug effects*
  15. Abd Jalil MA, Kasmuri AR, Hadi H
    Skin Pharmacol Physiol, 2017;30(2):66-75.
    PMID: 28291965 DOI: 10.1159/000458416
    BACKGROUND: The stingless bee is a natural type of bee that exists in almost every continent. The honey produced by this bee has been widely used across time and space. The distinctive feature of this honey is that it is stored naturally in the pot (cerumen), thus contributing to its beneficial properties, especially in the wound healing process.

    METHODS: In this article, several studies on stingless bee honey that pointed out the numerous therapeutic profiles of this honey in terms of its antioxidant, antimicrobial, anti-inflammatory, as well as moisturizing properties are reviewed. All of these therapeutic properties are related to wound healing properties.

    RESULTS: Antioxidant in stingless bee honey could break the chain of free radicals that cause a detrimental effect to the wounded area. Furthermore, the antimicrobial properties of stingless bee honey could overcome the bacterial contamination and thus improve the healing rate. Moreover, the anti-inflammatory attribute in this honey could protect the tissue from highly toxic inflammatory mediators. The moisturizing properties of the honey could improve wound healing by promoting angiogenesis and oxygen circulation.

    CONCLUSION: The application of honey to the wound has been widely used since ancient times. As a result, it is essential to understand the pharmacological mechanism of the honey towards the physiology of the wounded skin in order to optimize the healing rate in the future.

    Matched MeSH terms: Wound Healing/drug effects*
  16. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, et al.
    Crit Rev Ther Drug Carrier Syst, 2017;34(5):387-452.
    PMID: 29256838 DOI: 10.1615/CritRevTherDrugCarrierSyst.2017016957
    Chronic wounds which include diabetic foot ulcer (DFU), pressure ulcer, and arterial or venous ulcers compel a significant burden to the patients, healthcare providers, and the healthcare system. Chronic wounds are characterized by an excessive persistent inflammatory phase, prolonged infection, and the failure of defense cells to respond to environmental stimuli. Unlike acute wounds, chronic nonhealing wounds pose a substantial challenge to conventional wound dressings, and the development of novel and advanced wound healing modalities is needed. Toward this end, numerous conventional wound-healing modalities have been evaluated in the management of nonhealing wounds, but a multifaceted approach is lacking. Therefore, this review aims to compile and explore the wide therapeutic algorithm of current and advanced wound healing approaches to the treatment of chronic wounds. The algorithm of chronic wound healing techniques includes conventional wound dressings; approaches based on autografts, allografts, and cultured epithelial autografts; and recent modalities based on natural, modified or synthetic polymers and biomaterials, processed mutually in the form of hydrogels, films, hydrocolloids, and foams. Moreover, this review also explores the promising potential of advanced drug delivery systems for the sustained delivery of growth factors, curcumin, aloe vera, hyaluronic acid, and other bioactive substances as well as stem cell therapy. The current review summarizes the convincing evidence for the clinical dominance of polymer-based chronic wound healing modalities as well as the latest and innovative therapeutic strategies for the treatment of chronic wounds.
    Matched MeSH terms: Wound Healing/drug effects*
  17. Pasupuleti VR, Sammugam L, Ramesh N, Gan SH
    Oxid Med Cell Longev, 2017;2017:1259510.
    PMID: 28814983 DOI: 10.1155/2017/1259510
    BACKGROUND: There are several health benefits that honeybee products such as honey, propolis, and royal jelly claim toward various types of diseases in addition to being food.

    SCOPE AND APPROACH: In this paper, the effects of honey, propolis, and royal jelly on different metabolic diseases, cancers, and other diseases have been reviewed. The modes of actions of these products have also been illustrated for purposes of better understanding.

    KEY FINDINGS AND CONCLUSIONS: An overview of honey, propolis, and royal jelly and their biological potentials was highlighted. The potential health benefits of honey, such as microbial inhibition, wound healing, and its effects on other diseases, are described. Propolis has been reported to have various health benefits related to gastrointestinal disorders, allergies, and gynecological, oral, and dermatological problems. Royal jelly is well known for its protective effects on reproductive health, neurodegenerative disorders, wound healing, and aging. Nevertheless, the exact mechanisms of action of honey, propolis, and royal jelly on the abovementioned diseases and activities have not been not fully elucidated, and further research is warranted to explain their exact contributions.

    Matched MeSH terms: Wound Healing/drug effects*
  18. Fai S, Ahem A, Mustapha M, Mohd Noh UK, Bastion MC
    Asia Pac J Ophthalmol (Phila), 2017;6(5):418-424.
    PMID: 28828764 DOI: 10.22608/APO.201780
    PURPOSE: To determine the effect of topical insulin of 3 concentrations [0.5, 1, and 2 units per drop 4 times per day (QID)] on postoperative corneal epithelial wound healing in diabetic patients.

    DESIGN: A double blind randomized controlled hospital-based study involving diabetic patients with postoperative corneal epithelial defect after vitreoretinal surgery.

    METHODS: Diabetic patients were randomized to 3 different concentrations of topical insulin (DTI 0.5, DTI 1, and DTI 2) or placebo in the control group (DNS). Primary outcome measure was the rate of corneal epithelial wound healing (mm² per hour) over pre-set interval and time from baseline to minimum size of epithelial defect on fluorescein stained anterior segment digital camera photography. Secondary outcome measure was any adverse effect of topical insulin. Follow-up was 1 month.

    RESULTS: Thirty-two eyes of 32 patients undergoing intraoperative corneal debridement with resultant epithelial defect (8 eyes per group) were analyzed. DTI 0.5 was superior to other concentrations achieving 100% healing rate within 72 hours of treatment compared with 62.5% in DNS, 75% in DTI 1, and 62.5% in DTI 2. Statistically, DTI 0.5 achieved significant results (P = 0.036) compared with the diabetic control group (DNS) in terms of mean rate of corneal epithelial wound healing from maximum to minimum defect size. No adverse effect of topical insulin was reported.

    CONCLUSIONS: Topical insulin 0.5 units QID is most effective for healing corneal epithelial defect in diabetic patients after vitrectomy surgery compared with placebo and higher concentrations. Topical insulin is safe for human ocular usage.

    Matched MeSH terms: Wound Healing/drug effects
  19. Nair HKR
    Int J Low Extrem Wounds, 2018 Mar;17(1):54-61.
    PMID: 29564953 DOI: 10.1177/1534734618762225
    The management of chronic nonhealing ulcers pose a great challenge because they are associated with morbidity and increased costs. This report presents the observations of standard management along with application of modified collagen with glycerin (MCG) in the periwound area for management of nonhealing wounds. This observational report included 50 patients (33 male, 17 female) aged 24 to 94 years having nonhealing wounds. All wounds were treated using standard treatment protocols (TIME concept), whereas the periwound severity was assessed using the Harikrishna Periwound Skin Classification (HPSC). All patients received once-daily application of MCG lotion directly in the periwound areas and compression bandaging until there was complete wound healing. Patient compliance was ensured by regular follow-up and counseling. All diabetic patients were counseled to ensure glycemic control during the entire follow-up period. The criteria used for wound healing were based on clinical observation, and proper epithelialization of the wound was the end point. The median age of the wounds was 12.0 weeks (95% CI = 8.00 - 58.08). Majority of the non-healing wounds were diabetic foot ulcers with age of wound between 4 weeks to 15 years. The median time to complete wound healing was 12.71 (95% CI = 10.00-16.67) weeks. Standard treatment protocol of TIME principle with periwound area assessment based on HPSC 2015 and treatment accordingly with topical application of MCG along with additional measures has shown complete healing of nonhealing wounds. However, further large-scale comparative studies are needed to substantiate these effects on a larger population.
    Matched MeSH terms: Wound Healing/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links