Displaying publications 61 - 80 of 217 in total

Abstract:
Sort:
  1. Ahmad MB, Fatehi A, Zakaria A, Mahmud S, Mohammadi SA
    Int J Mol Sci, 2012;13(12):15640-52.
    PMID: 23443085 DOI: 10.3390/ijms131215640
    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10-50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.
    Matched MeSH terms: Zinc Oxide/chemistry*
  2. Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F
    Int J Mol Sci, 2014 Jun 18;15(6):11040-53.
    PMID: 24945313 DOI: 10.3390/ijms150611040
    In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.
    Matched MeSH terms: Zinc Oxide/chemistry*
  3. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Zinc Oxide/chemistry*
  4. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
    Matched MeSH terms: Zinc Oxide/chemistry*
  5. Zak AK, Razali R, Majid WH, Darroudi M
    Int J Nanomedicine, 2011;6:1399-403.
    PMID: 21796242 DOI: 10.2147/IJN.S19693
    Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
    Matched MeSH terms: Zinc Oxide/chemistry*
  6. Ramli M, Hussein MZ, Yusoff K
    Int J Nanomedicine, 2013;8:297-306.
    PMID: 23345976 DOI: 10.2147/IJN.S38858
    A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells.
    Matched MeSH terms: Zinc Oxide/pharmacology; Zinc Oxide/chemistry
  7. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: Zinc Oxide/pharmacology; Zinc Oxide/chemistry*
  8. Barahuie F, Hussein MZ, Abd Gani S, Fakurazi S, Zainal Z
    Int J Nanomedicine, 2014;9:3137-49.
    PMID: 25061291 DOI: 10.2147/IJN.S59541
    BACKGROUND: We characterize a novel nanocomposite that acts as an efficient anticancer agent.

    METHODS: This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors.

    RESULTS: The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines.

    CONCLUSION: PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer.

    Matched MeSH terms: Zinc Oxide/chemistry*
  9. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F
    Int J Nanomedicine, 2014;9:1909-17.
    PMID: 24790433 DOI: 10.2147/IJN.S60274
    A series of novel bionanocomposites were cast using different contents of zinc oxide-silver nanoparticles (ZnO-AgNPs) stabilized by cellulose nanocrystals (CNC) as multifunctional nanosized fillers in poly(vinyl alcohol)/chitosan (PVA/Cs) matrices. The morphological structure, mechanical properties, ultraviolet-visible absorption, and antimicrobial properties of the prepared films were investigated as a function of their CNC/ZnO-AgNP content and compared with PVA/chitosan/CNC bionanocomposite films. X-ray diffraction and field emission scanning electron microscopic analyses showed that the CNC/ZnO-AgNPs were homogeneously dispersed in the PVA/Cs matrix and the crystallinity increased with increasing nanosized filler content. Compared with pure PVA/Cs, the tensile strength and modulus in the films increased from 0.055 to 0.205 GPa and from 0.395 to 1.20 GPa, respectively. Ultraviolet and visible light can be efficiently absorbed by incorporating ZnO-AgNPs into a PVA/Cs matrix, suggesting that these bionanocomposite films show good visibility and ultraviolet-shielding effects. The bionanocomposite films had excellent antimicrobial properties, killing both Gram-negative Salmonella choleraesuis and Gram-positive Staphylococcus aureus. The enhanced physical properties achieved by incorporating CNC/ZnO-AgNPs could be beneficial in various applications.
    Matched MeSH terms: Zinc Oxide/pharmacology; Zinc Oxide/chemistry
  10. Nor Hazliana Harun, Mydin, Rabiatul Basria S.M.N., Sreekantan, Srimala, Khairul Arifah Saharudin, Norfatehah Basiron, Fakrul Radhi, et al.
    MyJurnal
    Zinc oxide (ZnO) nanoparticles (NPs) has become as promising candidate for antibacterial agents against Escherichia coli (E.coli), commensal hospital- acquired infections (HAIs). This study investigates the antibacterial action of ZnO NPs in three difference shapes; nanorod, nanoflakes and nanospheres against E.coli ATCC 25922. The antibacterial activity of ZnO NPs was determine through two standard protocols known as Clinical Laboratory Standards Institute (CLSI) MO2-A11 under light conditions of 5.70 w/m2 and American standard test method (ASTM) E-2149. Preliminary screening shows ZnO NPs did not inhibit the growth of E.coli. Further analysis using ASTM E-2149 in dynamic conditions revealed antibacterial activity after 3 hours with 100% reduction for ZnO NPs nanoflakes and 6 hours with 94.63% reduction for ZnO nanospheres, respectively. It demonstrated the ZnO NPs in nanoflakes and nanospheres exerted higher antibacterial activity possibly through release of ios, free radicals, ROS generation and electrostatic collision which contribute to bacterial death. Further analysis is needed to investigate biocompatibility of these samples for future biomedical applications.
    Matched MeSH terms: Zinc Oxide
  11. Hutagalung, Sabar D., Eng, Siew T., Zainal A. Ahmad, Ishak Mat, Yussof Wahab
    MyJurnal
    One-dimensional nanostructure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nanoscale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nanostructured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nanostructures (nanoparticles, nanowires, nanorods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nanostructures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N2H4.2H2O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 o C for 1 hour under argon flow to form onedimensional nanostructures. The SEM and TEM images show the formation of nanocompositelike structures, which some small nanobars and nanopellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases.
    Matched MeSH terms: Zinc Oxide
  12. Al-Hatamleh MAI, Hussin TMAR, Taib WRW, Ismail I
    J Taibah Univ Med Sci, 2019 Oct;14(5):431-438.
    PMID: 31728141 DOI: 10.1016/j.jtumed.2019.09.003
    Objective: This study aimed to determine the allelic and genotypic association of the Val66Met (rs6265) polymorphism in the BDNF gene with stress levels in preclinical medical students of Universiti Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia.

    Methods: In this cross-sectional study, we recruited all 122 preclinical medical students. The validated depression anxiety stress scales-21 (DASS-21) questionnaire was distributed and blood samples were collected from each subject for DNA extraction. Genotyping analysis of the BDNF gene (Val66Met) polymorphism was performed via an optimised polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.

    Results: A total of 105 subjects agreed to participate in this study. Indian students were found to more likely have the Val/Val genotype, whereas Malay students were more likely to have the Met/Met genotype (p = 0.027). Individuals carrying any one of the three BDNF genotypes (Val/Val, Val/Met and Met/Met) differed significantly from each other in terms of their perception of stress (p = 0.010); students carrying the Val/Val genotype (M = 10.6) perceived significantly lower stress than students carrying the Val/Met (M = 14) and Met/Met (M = 15.1) genotypes.

    Conclusion: In our study, the Met-allele was associated with higher stress levels. To the best of our knowledge, this is the first study investigating this stress-related gene in medical students. The findings from this study should trigger more investigators to focus on the impact of stress on genetically predisposed medical students.

    Matched MeSH terms: Zinc Oxide
  13. Ramiah SK, Atta Awad E, Hemly NIM, Ebrahimi M, Joshua O, Jamshed M, et al.
    J Anim Sci, 2020 Oct 01;98(10).
    PMID: 32936879 DOI: 10.1093/jas/skaa300
    This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.
    Matched MeSH terms: Zinc Oxide/pharmacology*
  14. Yatongchai C, Placek LM, Curran DJ, Towler MR, Wren AW
    J Biomater Appl, 2015 Nov;30(5):495-511.
    PMID: 26116020 DOI: 10.1177/0885328215592866
    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.
    Matched MeSH terms: Zinc Oxide/chemistry*
  15. Harun NH, Mydin RBSMN, Sreekantan S, Saharudin KA, Basiron N, Seeni A
    J Biomater Sci Polym Ed, 2020 10;31(14):1757-1769.
    PMID: 32498665 DOI: 10.1080/09205063.2020.1775759
    The emerging polymer nanocomposites have received industrial interests in diverse fields because of their added value in metal oxide-based nanocomposites, such as titanium (TiO2) and zinc oxide (ZnO). Linear low-density polyethylene (LLDPE)-based polymer has recently generated a huge market in the healthcare industry. TiO2 and ZnO are well known for their instant photocatalytic killing of hospital-acquired infections, especially multidrug-resistant (MDR) pathogens. This study investigated the actions of LLDPE/TiO2/ZnO (1:3) nanocomposites in different weight% against two representative MDR pathogens, namely, methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumonia (K.pneumoniae). Antibacterial activities were quantified according to international standard guidelines of CLSI MO2-A11 (static condition) and ASTM E-2149 (dynamic condition). Preliminary observation via a scanning electron microscope revealed that LLDPE matrix with TiO2/ZnO nanocomposites changed the bacterial morphology and reduced the bacterial adherence and biofilm formation. Furthermore, a high ZnO weight ratio killed both types of pathogens. The bactericidal potential of the nanocomposite is highlighted by the enhancements in photocatalytic activity, zinc ion release and reactive species, and bacteriostatic/bactericidal activity against bacterial growth. This study provides new insights into the MDR-bactericidal potential of LLDPE with TiO2/ZnO nanocomposites for targeted healthcare applications.
    Matched MeSH terms: Zinc Oxide
  16. Harun NH, Mydin RBSMN, Sreekantan S, Saharuddin KA, Seeni A
    J Biomater Sci Polym Ed, 2021 07;32(10):1301-1311.
    PMID: 33849408 DOI: 10.1080/09205063.2021.1916866
    An innovative nano-base polymer that scavenges radicals and reactive oxygen species exhibits potential antibacterial properties, which are crucial in the biomedical field, particularly in reducing nosocomial infections. However, the safety of this nano-based polymer, which has direct contact with the human system, has not been fully understood. The present study investigated the cytocompatibility and hemocompatibility responses of linear low-density polyethylene polymer (LLDPE) embedded with difference ratios of heterogeneous TiO2/ZnO nanocomposites. Exposure of the blood and fibroblast cells to LLDPE/100Z and LLDPE/25T75Z/10% nanocomposite films for 48 and 72 h decreased their viability by less than 40%, compared with LLDPE, LLDPE/100T and LLDPE/25T75Z/5% nanocomposite films. It also presented possible cellular damage and cytotoxicity, which was supported by the findings from the significant release of extracellular lactate dehydrogenase profiles and cell survival assay Further observation using an electron microscope revealed that LLDPE films with heterogeneous 25T75Z/5% promoted cell adhesion. Moreover, no hemolysis was detected in all ratios of heterogeneous TiO2/ZnO nanocomposite in LLDPE film as it was less than 0.2%, suggesting that these materials were hemocompatible. This study on LLDPE film with heterogeneous TiO2/ZnO nanocomposites demonstrated favorable biocompatible properties that were significant for advanced biomedical polymer application in a hospital setting.
    Matched MeSH terms: Zinc Oxide*
  17. Sin JC, Lam SM, Lee KT, Mohamed AR
    J Colloid Interface Sci, 2013 Jul 1;401:40-9.
    PMID: 23618322 DOI: 10.1016/j.jcis.2013.03.043
    A novel samarium-doped spherical-like ZnO hierarchical nanostructure (Sm/ZnO) was synthesized via a facile and surfactant-free chemical solution route. The as-synthesized products were characterized by X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, field emission scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The results revealed that Sm ion was successfully doped into ZnO. It was also observed that the Sm doping increased the visible light absorption ability of Sm/ZnO and a red shift for Sm/ZnO appeared when compared to pure ZnO. The photocatalytic studies revealed that the Sm/ZnO exhibited excellent photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) compared with the pure ZnO and commercial TiO2 under visible light irradiation. The photocatalytic enhancement of Sm/ZnO products was attributed to their high charge separation efficiency and ·OH generation ability as evidenced by the photoluminescence spectra. The photocatalytic investigation also showed that various parameters exerted their individual influence on the degradation rate of 2,4-DCP. By using a certain of radical scavengers, ·OH was determined to play a pivotal role for the 2,4-DCP degradation. Moreover, the Sm/ZnO could be easily separated and reused, indicating great potential for practical applications in environmental cleanup.
    Matched MeSH terms: Zinc Oxide/chemistry*
  18. Khim TP, Sanggar V, Shan TW, Peng KC, Western JS, Dicksit DD
    J Conserv Dent, 2018 10 9;21(5):562-568.
    PMID: 30294122 DOI: 10.4103/JCD.JCD_115_18
    Introduction: Among the various causes of tooth discoloration after root canal treatment, percolation of sealer remnants into the dentinal tubules of the pulp chamber is the most common cause.

    Objectives: The aim of this study is to evaluate the efficacy of dentin bonding agent (DBA) in preventing coronal discoloration caused by four different root canal sealers- MTA Fillapex, Sealapex, Zical and Z. O. B seal at different time intervals by measuring chromatic alterations using digital images analysis method.

    Methodology: Ninety mandibular premolars were collected and sectioned at 1 mm below the cementoenamel junction. Standard access cavity preparations of dimensions (depth-3 mm, width-0.8 mm, and length-3 mm) were prepared with a No. 245 bur through the cervical access. Following the standard irrigation protocol, specimens were then randomly divided into nine groups (four groups without DBA [1-4] +4 groups with DBA [5-8] +1 negative control [9]). In Groups 1-4, four different root canal sealers (MTA Fillapex, Sealapex, Zical, and Z.O.B seal) were applied to the walls of the pulp chamber. For Groups 5-8, the samples were etched with 37% phosphoric acid and DBA application was done before the respective root canal sealer application. The cervical access in all specimens was sealed using glass ionomer cement. Digital photographs were taken under standard lighting and environmental conditions at different time intervals: preprocedural, postprocedural, and after 1, 2, 3, and 4 months. These images were analyzed using Adobe Photoshop CS6 from which laboratory values and subsequently Delta E values were obtained.

    Results: Statistical analysis performed using repeated measures ANOVA and post hoc Tukey's tests show that the groups with DBA application had significantly lower mean Delta E values (P < 0.05) compared to the groups without DBA application.

    Conclusion: DBAs applied to the dentinal walls of the pulp chamber before obturation can effectively reduce the sealer-induced coronal discoloration.

    Matched MeSH terms: Zinc Oxide-Eugenol Cement
  19. Ahmad A, Ghufran R, Al-Hosni TK
    J Environ Health Sci Eng, 2019 Dec;17(2):1195-1203.
    PMID: 32030185 DOI: 10.1007/s40201-019-00434-2
    To investigate the interaction of zinc oxide nanoparticles (ZnO NPs) with fly ash soil (FAS) for the reduction of metals from FAS by Parthenium hysterophorus were studied. The average accumulation of metals by P. hysterophorus stem were Fe 79.6%; Zn 88.5%; Cu 67.5%; Pb 93.6%; Ni 43.5% and Hg 39.4% at 5.5 g ZnO NP. The concentration of ZnO NP at 1.5 g did not affect the metals accumulation, however at 5.5 g ZnO NP showed highest metal reduction was 96.7% and at 10.5-15.5 g ZnO NP of 19.8%. The metal reduction rate was R
    max
    for Fe 16.4; Zn 21.1; Pb 41.9; Hg 19.1 was higher than Ni 6.4 and Cu 11.3 from the FAS at 5.5 g ZnO NP whereas, the reduction rate of Pb showed highest. With doses of 5.5 g ZnO NP the biomass increased upto 78%; the metal reduced upto 98.7% with the share of 100% ZnO NP from FAS. Further investigation with phytotoxicity the plant reactive oxygen species (ROS) production were affected due was mainly due to the recovery of metals from FAS (R2 = 0.99).
    Matched MeSH terms: Zinc Oxide
  20. Pang WY, Ahmad AL, Zaulkiflee ND
    J Environ Manage, 2019 Nov 01;249:109358.
    PMID: 31450197 DOI: 10.1016/j.jenvman.2019.109358
    The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
    Matched MeSH terms: Zinc Oxide*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links