Displaying publications 61 - 80 of 239 in total

Abstract:
Sort:
  1. Chua LS
    Phytother Res, 2014 Nov;28(11):1589-98.
    PMID: 25043965 DOI: 10.1002/ptr.5193
    Till to date, the advancement of medical science and technology is still unable to provide inclusive treatment to liver inflammation caused by neither microbial invasion nor antibiotics nor environmental toxins. Therefore, this article provides the basic knowledge of liver inflammation up to the cellular level and its current medical treatment for inflammatory symptom suppression. Because of the adverse effects of drug treatment, people start looking for comprehensive alternative nowadays. Herbal medicine is believed to be the best of choice because it is being practiced until now for centuries. Although numerous herbal plants have been reported for their efficacies in liver protection, Andrographis paniculata is the most widely used herb for hepatoprotection, particularly in Ayurveda and traditional Chinese medicine. This review covers the significant observation on the biochemical responses due to the experimental induction of liver damage in vitro and in vivo using the marker compound of the herb, namely andrographolide and its derivatives. The standardized extract of A. paniculata with the right phytochemical composition of diterpenic labdanes is likely to have tremendous potential for the development of hepatoprotective medicine. This standardized herbal medicine may not provide immediate remedy, but it can be considered as a comprehensive therapy for liver inflammation.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  2. Ahmed S, Gul S, Idris F, Hussain A, Zia-Ul-Haq M, Jaafar HZ, et al.
    Molecules, 2014;19(8):11385-94.
    PMID: 25090125 DOI: 10.3390/molecules190811385
    Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  3. Salim E, Kumolosasi E, Jantan I
    J Nat Med, 2014 Jul;68(3):647-53.
    PMID: 24799081 DOI: 10.1007/s11418-014-0841-0
    The inhibitory activities of the methanol extracts from 20 selected medicinal plants on the release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) were evaluated. The major compound from the most active plant extract was also investigated. The inhibitory effect of the methanol extracts on the release of pro-inflammatory cytokines was tested by incubating PBMCs with the sample and then stimulating by lipopolysaccharide at 0.1 μg/ml. The level of cytokines was determined using enzyme-linked immunosorbent assay. Among the extracts tested, Andrographis paniculata extract demonstrated the strongest inhibition of interleukin (IL)-1β, IL-1α, and IL-6 release, with IC50 values of 1.54, 1.06, and 0.74 μg/ml, respectively. The IC50 value of A. paniculata extract was significantly higher than that of andrographolide on IL-1α, IL-1β, and IL-6 (p anti-inflammatory agents by inhibiting the release of pro-inflammatory cytokines.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  4. Balakumar P, Nyo YH, Renushia R, Raaginey D, Oh AN, Varatharajan R, et al.
    Pharmacol Res, 2014 Sep;87:144-50.
    PMID: 24861566 DOI: 10.1016/j.phrs.2014.05.008
    Dipyridamole is a platelet inhibitor indicated for the secondary prevention of transient ischemic attack. It inhibits the enzyme phosphodiesterase, elevates cAMP and cGMP levels and prevents platelet aggregation. Dipyridamole inhibits the cellular uptake of adenosine into red blood cells, platelets and endothelial cells that results in increased extracellular availability of adenosine, leading to modulation of cardiovascular function. The antiplatelet action of dipyridamole might offer therapeutic benefits in secondary stroke prevention in combination with aspirin. Inflammation and oxidative stress play an important role in atherosclerosis and thrombosis development, leading to stroke progression. Studies demonstrated anti-inflammatory, anti-oxidant and anti-proliferative actions of dipyridamole. These pleiotropic potentials of dipyridamole might contribute to improved therapeutic outcomes when used with aspirin in preventing secondary stroke. Dipyridamole was documented as a coronary vasodilator 5 decades ago. The therapeutic failure of dipyridamole as a coronary vasodilator is linked with induction of 'coronary steal' phenomenon in which by dilating resistance vessels in non-ischemic zone, dipyridamole diverts the already reduced blood flow away from the area of ischemic myocardium. Dipyridamole at high-dose could cause a marked 'coronary steal' effect. Dipyridamole, however, at low-dose could have a minimal hemodynamic effect. Low-dose dipyridamole treatment has a therapeutic potential in partially preventing diabetes mellitus-induced experimental vascular endothelial and renal abnormalities by enhancing endothelial nitric oxide signals and inducing renovascular reduction of oxidative stress. In spite of plenteous research on dipyridamole's use in clinics, its precise clinical application is still obscure. This review sheds lights on pleiotropic pharmacological actions and therapeutic potentials of dipyridamole.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  5. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  6. Wijesinghe WA, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, et al.
    Environ Toxicol Pharmacol, 2014 Jan;37(1):110-7.
    PMID: 24317194 DOI: 10.1016/j.etap.2013.11.006
    5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  7. Bukhari SN, Jantan I, Jasamai M
    Mini Rev Med Chem, 2013 Jan;13(1):87-94.
    PMID: 22876943
    Chalcones (1, 3-Diphenyl-2-propen-1-one) are constituted by a three carbon α, β-unsaturated carbonyl system. The biosynthesis of flavonoids and isoflavonoids is initiated by chalcones. Notable pharmacological activities of chalcones and its derivatives include anti-inflammatory, antifungal, antibacterial, antimalarial, antituberculosis, antitumor, antimicrobial and antiviral effects respectively. Owing to simplicity of the chemical structures and a huge variety of pharmacological actions exhibited, the entities derived from chalcones are subjected to extensive consideration. This review article is an effort to sum up the anti-inflammatory activities of chalcone derived chemical entities. Effect of chalcones on lipid peroxidation, heme oxygenase 1(HO-1), cyclooxygenase (COX), interleukin 5 (IL-5), nitric oxide (NO) and expression of cell adhesion molecules (CAM) is summarized stepwise.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  8. Oskoueian E, Abdullah N, Hendra R, Karimi E
    Int J Mol Sci, 2011;12(12):8610-25.
    PMID: 22272095 DOI: 10.3390/ijms12128610
    Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01) higher phenolics and flavonoids contents; and significantly (P < 0.01) higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01) followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest IC(50) values followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  9. Nesaretnam K, Meganathan P
    Ann N Y Acad Sci, 2011 Jul;1229:18-22.
    PMID: 21793834 DOI: 10.1111/j.1749-6632.2011.06088.x
    Inflammation is an organism's response to environmental assaults. It can be classified as acute inflammation that leads to therapeutic recovery or chronic inflammation, which may lead to the development of cancer and other ailments. Genetic changes that occur within cancer cells themselves are responsible for many aspects of cancer development but are dependent on ancillary processes for tumor promotion and progression. Inflammation has long been associated with the development of cancer. The distinct characteristics of cancer cells to proliferate, metastasize, evade apoptotic signals, and develop chemoresistance have been linked to the inflammatory response. Due to the involvement of multiple genes and various pathways, current drugs that target single genes have not been effective in providing a therapeutic cure. On the other hand, natural products target multiple genes and therefore have better success compared to drugs. Tocotrienols, the potent isoforms of vitamin E, are such a natural product. This review will discuss the relationship between cancer and inflammation with particular focus on the roles played by NF-κB, STAT3, and COX-2.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  10. Abdullah M, Chai PS, Loh CY, Chong MY, Quay HW, Vidyadaran S, et al.
    Mol Nutr Food Res, 2011 May;55(5):803-6.
    PMID: 21520494 DOI: 10.1002/mnfr.201100087
    Fruit and vegetables have therapeutic potential as they dampen inflammation, have no known side-effects and as whole foods have prospective additive and synergistic benefits. Th1 (IFN-γ(+) CD4(+))/Th2 (IL-4(+)CD4(+)) T cells play a vital role in mediating inflammatory responses and may be regulated by regulatory T cells (Tregs). Effects of Carica papaya on cells of healthy individuals were determined using flow cytometry methods. Significant down-regulation of IFN-γ(+) CD4(+) (p=0.03, n=13), up-regulation of IL-4(+) CD4(+) (p=0.04, n=13) T cells and up-regulation of CD3(+) CD4(+) CD25(+) CD127(-) (p=0.001, n=15) Tregs were observed after papaya consumption. In vitro cultures showed up-regulation of Tregs in male subjects and was significantly associated with levels of IL-1β in culture supernatants (R(2) =0.608, p=0.04, n=12). Other inflammatory cytokines were significantly suppressed. Papaya consumption may exert an anti-inflammatory response mediated through Tregs and have potential in alleviating inflammatory conditions.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  11. Sulaiman MR, Zakaria ZA, Chiong HS, Lai SK, Israf DA, Azam Shah TM
    Med Princ Pract, 2009;18(4):272-9.
    PMID: 19494533 DOI: 10.1159/000215723
    The present study was carried out to explore the antinociceptive as well as the anti-inflammatory effects of an ethanol extract of Stachytarpheta jamaicensis (L.) Vahl (EESJ) using 3 models of nociception and 2 models of inflammation in experimental animals.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  12. Lean QY, Gueven N, Eri RD, Bhatia R, Sohal SS, Stewart N, et al.
    Expert Rev Clin Pharmacol, 2015;8(6):795-811.
    PMID: 26308504 DOI: 10.1586/17512433.2015.1082425
    Current drug therapies for ulcerative colitis (UC) are not completely effective in managing moderate-to-severe UC and approximately 20% of patients with severe UC require surgical interventions. Heparins, polydisperse mixtures of non-anticoagulant and anticoagulant oligosaccharides, are widely used as anticoagulants. However, heparins are also reported to have anti-inflammatory properties. Unfractionated heparin was initially used in patients with UC for the treatment of rectal microthrombi. Surprisingly, it was found to be effective in reducing UC-associated symptoms. Since then, several pre-clinical and clinical studies have reported promising outcomes of heparins in UC. In contrast, some controlled clinical trials demonstrated no or only limited benefits, thus the potential of heparins for the treatment of UC remains uncertain. This review discusses potential mechanisms of action of heparins, as well as proposed reasons for their contradictory clinical effectiveness in the treatment of UC.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  13. Rasadah MA, Khozirah S, Aznie AA, Nik MM
    Phytomedicine, 2004 Feb;11(2-3):261-3.
    PMID: 15070182
    The anti-inflammatory activity of the stem extracts of Sandoricum koetjape was investigated on topical administration using the TPA (tetradecanoylphorbol acetate)-induced mouse ear inflammation model. Bioassay-guided chromatographic fractionation of active fractions led to the isolation 3-oxo-12-oleanen-29-oic acid and katonic acid as the bioactive principles responsible for the anti-inflammatory acitivity. The percentage of inhibition exhibited by 3-oxo-12-oleanen-29-oic acid was almost equivalent to indomethacin.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  14. Hisamuddin N, Shaik Mossadeq WM, Sulaiman MR, Abas F, Leong SW, Kamarudin N, et al.
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323775 DOI: 10.3390/molecules24142614
    Curcumin, derived from the rhizome Curcuma longa, has been scientifically proven to possess anti-inflammatory activity but is of limited clinical and veterinary use owing to its low bioavailability and poor solubility. Hence, analogs of curcuminoids with improved biological properties have been synthesized to overcome these limitations. This study aims to provide the pharmacological basis for the use of 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), a synthetic curcuminoid analog, as an anti-edematogenic and anti-granuloma agent. The carrageenan-induced paw edema and the cotton pellet-induced granuloma assays were used to assess the anti-inflammatory activity of DHHPD in mice. The effects of DHHPD on the histaminergic, serotonergic, and bradykininergic systems were determined by the histamine-, serotonin-, and bradykinin-induced paw edema tests, respectively. DHHPD (0.1, 0.3, 1, and 3 mg/kg, intraperitoneal) evoked significant reductions (p < 0.05) in carrageenan-induced paw edema at different time intervals and granuloma formation (p < 0.0001) by 22.08, 32.57, 37.20, and 49.25%, respectively. Furthermore, DHHPD significantly reduced paw edema (p < 0.05) induced by histamine, serotonin, and bradykinin. The present study suggests that DHHPD exerts anti-edematogenic activity, possibly by inhibiting the synthesis or release of autacoid mediators of inflammation through the histaminergic, serotonergic, and bradykininergic systems. The anti-granuloma effect may be attributed to the suppression of transudative, exudative, and proliferative activities associated with inflammation.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  15. Hong X, Ajat M, Fakurazi S, Noor AM, Ismail IS
    J Ethnopharmacol, 2021 Mar 25;268:113647.
    PMID: 33271242 DOI: 10.1016/j.jep.2020.113647
    ETHNOPHARMACOLOGICAL RELEVANCE: Scurrula ferruginea (Jack) Danser (locally known as 'Dedalu' or 'dian nan ji sheng' in Malaysia and China) is a hemi-parasitic shrub that is widely used as herbal medicine to treat inflammation, rheumatism, and stroke. However, the scientific basis of its anti-inflammatory function and mechanism remain to be proven.

    AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans.

    MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and TNF-α mRNA expression.

    RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1β protein production along with the down regulation of iNOS and IL-1β mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 μg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α.

    CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1β mRNA expression, NO creation, IL-1β, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  16. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  17. Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Gan SY
    Curr Alzheimer Res, 2019;16(3):251-260.
    PMID: 30819080 DOI: 10.2174/1567205016666190228124630
    BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments.

    OBJECTIVE: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators.

    METHOD: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay.

    RESULTS: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators.

    CONCLUSIONS: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer's disease (AD).

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  18. Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al.
    Chem Biol Interact, 2019 Feb 01;299:168-178.
    PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009
    Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  19. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  20. Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB
    Int J Mol Sci, 2021 May 12;22(10).
    PMID: 34065781 DOI: 10.3390/ijms22105094
    Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links