Displaying publications 61 - 80 of 89 in total

Abstract:
Sort:
  1. Taha H, Looi CY, Arya A, Wong WF, Yap LF, Hasanpourghadi M, et al.
    PLoS One, 2015;10(5):e0126126.
    PMID: 25946039 DOI: 10.1371/journal.pone.0126126
    Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
    Matched MeSH terms: Caspases/metabolism
  2. Zahedifard M, Faraj FL, Paydar M, Looi CY, Hasandarvish P, Hajrezaie M, et al.
    Curr Pharm Des, 2015;21(23):3417-26.
    PMID: 25808938
    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.
    Matched MeSH terms: Caspases/metabolism
  3. Nassar ZD, Aisha AF, Idris N, Khadeer Ahamed MB, Ismail Z, Abu-Salah KM, et al.
    Oncol Rep, 2012 Mar;27(3):727-33.
    PMID: 22134768 DOI: 10.3892/or.2011.1569
    Deregulated cell signaling pathways result in cancer development. More than one signal transduction pathway is involved in colorectal cancer pathogenesis and progression. Koetjapic acid (KA) is a naturally occurring seco-A-ring oleanene triterpene isolated from the Sandoricum koetjape stem bark. We report the cellular and molecular mechanisms of anticancer activity of KA towards human colorectal cancer. The results showed that KA induces apoptosis in HCT 116 colorectal carcinoma cells by inducing the activation of extrinsic and intrinsic caspases. We confirmed that KA-induced apoptosis was mediated by DNA fragmentation, nuclear condensation and disruption in the mitochondrial membrane potential. Further studies on the effect of KA on cancer pathways show that the compound causes down-regulation of Wnt, HIF-1α, MAP/ERK/JNK and Myc/Max signaling pathways and up-regulates the NF-κB signaling pathway. The result of this study highlights the anticancer potential of KA against colorectal cancer.
    Matched MeSH terms: Caspases/metabolism
  4. Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, et al.
    J Food Sci, 2021 Feb;86(2):366-375.
    PMID: 33448034 DOI: 10.1111/1750-3841.15599
    Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
    Matched MeSH terms: Caspases/metabolism*
  5. Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM
    Curr Pharm Biotechnol, 2021;22(2):262-273.
    PMID: 32532192 DOI: 10.2174/1389201021666200612173029
    BACKGROUND: The anticancer effects of Phyllanthus amarus extract on various cancer cells have been investigated, however, the effects of its major constituents on HCT116 human colorectal cancer cells have not been reported.

    OBJECTIVE: In the present study, we investigated the cytotoxic effect of 80% ethanol extract of P. amarus and its marker constituents (phyllanthin, hypophyllanthin, gallic acid, niranthin, greraniin, phyltetralin, isolintetralin, corilagin and ellagic acid) on HCT116 and their underlying mechanisms of action.

    METHODS: Their antiproliferative and apoptotic effects on HCT 116 were performed using MTT assay and flow cytometric analysis, respectively, while caspases 3/7, 8 and 9 activities were examined using the colorimetric method. The expression of cleaved poly ADP ribose polymerase enzyme (PARP) and cytochrome c proteins was investigated by the immune-blot technique.

    RESULTS AND DISCUSSION: HPLC and LC-MS/MS analyses demonstrated that the extract contained mainly lignans and polyphenols. The plant samples markedly suppressed the growth and expansion of HCT116 cells in a concentration- and time-dependent manner with no toxicity against normal human fibroblast CCD18 Co. P. amarus extract, phyllanthin and gallic acid induced mode of cell death primarily through apoptosis as confirmed by the exteriorization of phosphatidylserine. Caspases 3/7, 8, and 9 activities increased in a concentration-dependent manner following 24h treatment. The expressions of cleaved PARP (Asp 214) and cytochrome c were markedly upregulated.

    CONCLUSION: P. amarus extract, phyllanthin and gallic acid exhibited an apoptotic effect on HCT116 cells through the caspases-dependent pathway.

    Matched MeSH terms: Caspases/metabolism*
  6. Reena K, Ng KY, Koh RY, Gnanajothy P, Chye SM
    Environ Toxicol, 2017 Jan;32(1):265-277.
    PMID: 26784575 DOI: 10.1002/tox.22233
    para-Phenylenediamine (PPD) has long been used in two-thirds of permanent oxidative hair dye formulations. Epidemiological studies and in vivo studies have shown that hair dye is a suspected carcinogen of bladder cancer. However, the toxicity effects of PPD to human bladder remains elusive. In this study, the effects of PPD and its involvement in the apoptosis pathways in human urothelial cells (UROtsa) was investigated. It was demonstrated that PPD decreased cell viability and increased the number of sub-G1 hypodiploid cells in UROtsa cells. Cell death due to apoptosis was detected using Annexin V binding assay. Further analysis showed PPD generated reactive oxygen species (ROS), induced mitochondrial dysfunction through the loss of mitochondrial membrane potential and increased caspase-3 level in UROtsa cells. Western blot analysis of PPD-treated UROtsa cells showed down-regulation of phosphorylated proteins from NF-κB, mTOR, and Wnt pathways. In conclusion, PPD induced apoptosis via activation of ROS-mediated mitochondrial pathway, and possibly through inhibition of NF-κB, mTOR, and Wnt pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 265-277, 2017.
    Matched MeSH terms: Caspases/metabolism
  7. Khan MS, Majid AM, Iqbal MA, Majid AS, Al-Mansoub M, Haque RS
    Eur J Pharm Sci, 2016 Oct 10;93:304-18.
    PMID: 27552907 DOI: 10.1016/j.ejps.2016.08.032
    Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3μg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.
    Matched MeSH terms: Caspases/metabolism
  8. Ahmad Hidayat AF, Chan CK, Mohamad J, Abdul Kadir H
    Biomed Pharmacother, 2018 Aug;104:806-816.
    PMID: 29860114 DOI: 10.1016/j.biopha.2018.05.073
    Dioscorea bulbifera, also known as air potato, has been cultivated as food crop mainly in tropical countries in Asia and Australia. The tubers are edible and have often been used in Traditional Chinese Medicine (TCM) and Ayurvedic medicine to treat cancer, diabetes, thyroid disease, and inflammation. This study aimed to investigate the effects of D. bulbifera on HCT116 human colorectal carcinoma cells and to unravel the plausible mechanisms underlying its apoptotic effects. The ethanol crude and fractions (hexane, ethyl acetate and water) of D. bulbifera were subjected to cell viability MTT assay against various cancer cell lines. The lowest IC50 of the extract and fractions on selected cancer cells were selected for further apoptosis assay and western blot analysis. HCT116 cancer cells were treated with D. bulbifera and stained with Annexin/PI or Hoechst 33342/PI for preliminary confirmation of apoptosis. The dissipation of mitochondria membrane potential (MMP) was determined by flow cytometry. The protein expressions of apoptosis-related proteins such as Bcl-2 family, caspases, Fas, PARP, ERK1/2 and JNK were detected by western blot analysis. Moreover, the HCT116 cells were treated with UO126 and SP600125 inhibitors to verify the involvement of ERK1/2 and JNK protein expressions in inducing apoptotic cell death. Based on the result, D. bulbifera ethyl acetate fraction (DBEAF) exhibited the most compelling cytotoxicity on HCT116 cells with an IC50 of 37.91 ± 1.30 µg/mL. The induction of apoptosis was confirmed by phosphatidylserine externalization and chromatin condensation. Depolarization of MMP further conferred the induction of apoptosis was through the regulation of Bcl-2 family proteins. Activation of caspase cascades (caspase-3, -9, -8 and -10) was elicited followed by the observation of cleaved PARP accumulation in DBEAF-treated cells. Furthermore, death receptor, Fas was activated upon exposure to DBEAF. Collective apoptotic evidences suggested the involvement of intrinsic and extrinsic pathways by DBEAF in HCT116 cells. Interestingly, the attenuation of ERK1/2 phosphorylation accompanied by the activation of JNK was detected in DBEAF-treated cells. In conclusion, the findings revealed that DBEAF induced apoptosis through intrinsic and extrinsic pathways involving ERK1/2 and JNK.
    Matched MeSH terms: Caspases/metabolism
  9. Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, et al.
    Drug Des Devel Ther, 2017;11:3045-3063.
    PMID: 29123378 DOI: 10.2147/DDDT.S144415
    The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
    Matched MeSH terms: Caspases/metabolism
  10. Abubakar IB, Lim KH, Kam TS, Loh HS
    Phytomedicine, 2017 Jul 01;30:74-84.
    PMID: 28545672 DOI: 10.1016/j.phymed.2017.03.004
    BACKGROUND: γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an Aspidosperma alkaloid, originally isolated from Tabernaemontana corymbosa, has proved to possess interesting anticancer activities. However, jerantinine A also induces toxicity to non-cancerous cells.

    PURPOSE: We adopted a combinatorial approach with the joint application of γ-tocotrienol and jerantinine A at lower concentrations in order to minimize toxicity towards non-cancerous cells while improving the potency on brain cancer cells.

    METHODS: The antiproliferative potency of individual γ-tocotrienol and jerantinine A as well as combined in low-concentration was firstly evaluated on U87MG cancer and MRC5 normal cells. Morphological changes, DNA damage patterns, cell cycle arrests and the effects of individual and combined low-concentration compounds on microtubules were then investigated. Finally, the potential roles of caspase enzymes and apoptosis-related proteins in mediating the apoptotic mechanisms were investigated using apoptosis antibody array, ELISA and Western blotting analysis.

    RESULTS: Combinatorial study between γ-tocotrienol at a concentration range (0-24µg/ml) and fixed IC20 concentration of jerantinine A (0.16µg/ml) induced a potent antiproliferative effect on U87MG cells and led to a reduction on the new half maximal inhibitory concentration of γ-tocotrienol (i.e.tIC50=1.29µg/ml) as compared to that of individual γ-tocotrienol (i.e. IC50=3.17µg/ml). A reduction on undesirable toxicity to MRC5 normal cells was also observed. G0/G1 cell cycle arrest was evident on U87MG cells receiving IC50 of individual γ-tocotrienol and combined low-concentration compounds (1.29µg/ml γ-tocotrienol + 0.16µg/ml jerantinine A), whereas, a profound G2/M arrest was evident on cells treated with IC50 of individual jerantinine A. Additionally, individual jerantinine A and combined compounds (except individual γ-tocotrienol) caused a disruption of microtubule networks triggering Fas- and p53-induced apoptosis mediated via the death receptor and mitochondrial pathways.

    CONCLUSIONS: These findings demonstrated that the combined use of lower concentrations of γ-tocotrienol and jerantinine A induced potent cytotoxic effects on U87MG cancer cells resulting in a reduction on the required individual concentrations and thereby minimizing toxicity of jerantinine A towards non-cancerous MRC5 cells as well as probably overcoming the high-dose limiting application of γ-tocotrienol. The multi-targeted mechanisms of action of the combination approach have shown a therapeutic potential against brain cancer in vitro and therefore, further in vivo investigations using a suitable animal model should be the way forward.

    Matched MeSH terms: Caspases/metabolism
  11. Kamba SA, Ismail M, Hussein-Al-Ali SH, Ibrahim TA, Zakaria ZA
    Molecules, 2013 Aug 30;18(9):10580-98.
    PMID: 23999729 DOI: 10.3390/molecules180910580
    Drug delivery systems are designed to achieve drug therapeutic index and enhance the efficacy of controlled drug release targeting with specificity and selectivity by successful delivery of therapeutic agents at the desired sites without affecting the non-diseased neighbouring cells or tissues. In this research, we developed and demonstrated a bio-based calcium carbonate nanocrystals carrier that can be loaded with anticancer drug and selectively deliver it to cancer cells with high specificity by achieving the effective osteosarcoma cancer cell death without inducing specific toxicity. The results showed pH sensitivity of the controlled release characteristics of the drug at normal physiological pH 7.4 with approximately 80% released within 1,200 min but when exposed pH 4.8 the corresponding 80% was released in 50 min. This study showed that the DOX-loaded CaCO₃ nanocrystals have promising applications in delivery of anticancer drugs.
    Matched MeSH terms: Caspases/metabolism
  12. Tor YS, Yazan LS, Foo JB, Wibowo A, Ismail N, Cheah YK, et al.
    PLoS One, 2015;10(6):e0127441.
    PMID: 26047480 DOI: 10.1371/journal.pone.0127441
    Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and β-sitosterol-3-O-β-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 μg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.
    Matched MeSH terms: Caspases/metabolism*
  13. Yaiw KC, Ong KC, Chua KB, Bingham J, Wang L, Shamala D, et al.
    J Virol Methods, 2007 Aug;143(2):140-6.
    PMID: 17442409
    Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
    Matched MeSH terms: Caspases/analysis
  14. Namvar F, Mohamad R, Baharara J, Zafar-Balanejad S, Fargahi F, Rahman HS
    Biomed Res Int, 2013;2013:604787.
    PMID: 24078922 DOI: 10.1155/2013/604787
    In the present study, we evaluated the effect of brown seaweeds Sargassum muticum methanolic extract (SMME), against MCF-7 and MDA-MB-231 breast cancer cell lines proliferation. This algae extract was also evaluated for reducing activity and total polyphenol content. The MTT assay results indicated that the extracts were cytotoxic against breast cancer cell lines in a dose-dependent manner, with IC50 of 22 μg/ml for MCF-7 and 55 μg/ml for MDA-MB-231 cell lines. The percentages of apoptotic MCF-7-treated cells increased from 13% to 67% by increasing the concentration of the SMME. The antiproliferative efficacy of this algal extract was positively correlated with the total polyphenol contents, suggesting a causal link related to extract content of phenolic acids. Cell cycle analysis showed a significant increase in the accumulation of SMME-treated cells at sub-G1 phase, indicating the induction of apoptosis by SMME. Further apoptosis induction was confirmed by Hoechst 33342 and AO/PI staining. Also SMME implanted in vivo into fertilized chicken eggs induced dose-related antiangiogenic activity in the chorioallantoic membrane (CAM). Our results imply a new insight on the novel function of Sargassum muticum polyphenol-rich seaweed in cancer research by induction of apoptosis, antioxidant, and antiangiogenesis effects.
    Matched MeSH terms: Caspases/metabolism
  15. Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, et al.
    PLoS One, 2017;12(8):e0182357.
    PMID: 28771532 DOI: 10.1371/journal.pone.0182357
    Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
    Matched MeSH terms: Caspases/metabolism
  16. Chan CK, Goh BH, Kamarudin MN, Kadir HA
    Molecules, 2012 May 31;17(6):6633-57.
    PMID: 22728359 DOI: 10.3390/molecules17066633
    The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm) was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.
    Matched MeSH terms: Caspases/metabolism
  17. Tai YC, Tan JA, Peh SC
    Virchows Arch., 2004 Nov;445(5):506-14.
    PMID: 15365830
    t(11;18)(q21;q21) Translocation and trisomy 3 are the most common chromosomal aberrations reported in low-grade mucosa-associated lymphoid tissue (MALT) lymphoma. The current study aims to investigate the frequency of these chromosomal aberrations in a series of 52 extranodal B-cell lymphomas. The tumours were categorised into three histological grades: grade 1 (low-grade lymphoma of MALT type), grade 2 [diffuse large B-cell lymphoma (DLBCL) with MALT component] and grade 3 (DLBCL without MALT component). Fluorescence in situ hybridisation analyses on paraffin tissue sections were performed using a locus-specific probe for the 18q21 region and a centromeric probe for chromosome 3. The 18q21 rearrangement was detected in 9 of 40 (23%) cases, including 7 of 23 (30%) grade-1 and 2 of 11 (18%) grade-3 tumours. Amplification of the 18q21 region was detected in 10 of 40 (25%) cases, and trisomy 3 was detected in 9 of 34 (26%) cases. Amplification of the 18q21 region may be an important alternative pathogenetic pathway in MALT lymphoma and was found almost exclusively in tumours without 18q21 rearrangement. Our study showed that tumours with 18q21 rearrangement and 18q21 amplification develop along two distinct pathways, and the latter was more likely to transform into high-grade tumours upon acquisition of additional genetic alterations, such as trisomy 3. Trisomy 3 was more frequently found in coexistence with 18q21 abnormalities, suggesting that it was more likely to be a secondary aberration.
    Matched MeSH terms: Caspases
  18. Asif M, Shafaei A, Jafari SF, Mohamed SB, Ezzat MO, Majid AS, et al.
    Toxicol Lett, 2016 Jun 3.
    PMID: 27268964 DOI: 10.1016/j.toxlet.2016.05.027
    Colorectal cancer (CRC) is one of the most common human malignant tumors worldwide. Arising from the transformation of epithelial cells in the colon and/or rectum into malignant cells, the foundation of CRC pathogenesis lies in the progressive accumulation of mutations in oncogenes and tumor-suppressor genes, such as APC and KRAS. Resistance to apoptosis is one of the key mechanisms in the development of CRC as it is for any other kind of cancer. Natural products have been shown to induce the expression of apoptosis regulators that are blocked in cancer cells. In the present study, a series of in vitro assays were employed to study the apoptosis inducing attributes of Isoledene rich sub-fraction (IR-SF) collected from the oleo-gum resin of M. ferrea. Data obtained, shows that IR-SF inhibited cell proliferation and induced typical apoptotic changes in the overall morphology of all the CRC cell lines tested. Fluorescent staining assays revealed characteristic nuclear condensation, and marked decrease in mitochondrial outer membrane potential in treated cells. In addition, an increment in the levels of ROS, caspase-8,-9 and -3 was observed. Proteomic analysis revealed that IR-SF up-regulated the expression of pro-apoptotic proteins, i.e., Bid, Bid and cytochrome c. Cytochrome c in turn activated caspases cascade resulting in the induction of apoptosis. Moreover, IR-SF significantly down-regulated Bcl-2, Bcl-w, survivin, xIAP and HSPs pro-proteins and induced DNA fragmentation and G0/G1-phase arrest in HCT 116 cells. Chemical characterization of IR-SF by GC-MS and HPLC methods identified Isoledene as one of the major compounds. Altogether, the results of the present study demonstrate that IR-SF may induce apoptosis in human colorectal carcinoma cells through activation of ROS-mediated apoptotic pathways.
    Matched MeSH terms: Caspases
  19. Tan YS, Ooi KK, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Inorg Biochem, 2015 Sep;150:48-62.
    PMID: 26086852 DOI: 10.1016/j.jinorgbio.2015.06.009
    In the solid state each of three binuclear zinc dithiocarbamates bearing hydroxyethyl groups, {Zn[S2CN(R)CH2CH2OH]2}2 for R = iPr (1), CH2CH2OH (2), and Me (3), and an all alkyl species, [Zn(S2CNEt2)2]2 (4), features a centrosymmetric {ZnSCS}2 core with a step topology; both 1 and 3 were isolated as monohydrates. All compounds were broadly cytotoxic, specifically against human cancer cell lines compared with normal cells, with greater potency than cisplatin. Notably, some selectivity were indicated with 2 being the most potent against human ovarian carcinoma cells (cisA2780), and 4 being more cytotoxic toward multidrug resistant human breast carcinoma cells (MCF-7R), human colon adenocarcinoma cells (HT-29), and human lung adenocarcinoma epithelial cells (A549). Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis in HT-29 cells is demonstrated via both extrinsic and intrinsic pathways. Compounds 2-4 activate the p53 gene while 1 activates both p53 and p73. Cell cycle arrest at the S and G2/M phases correlates with inhibition of HT-29 cell growth. Cell invasion is also inhibited by 1-4 which is correlated with down-regulation of NF-κB.
    Matched MeSH terms: Caspases
  20. Nwaefulu ON, Al-Shar'i NA, Owolabi JO, Sagineedu SR, Woei LC, Wai LK, et al.
    J Mol Model, 2022 Oct 04;28(11):340.
    PMID: 36194315 DOI: 10.1007/s00894-022-05326-1
    Cancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects. Natural products have been a rich source of anticancer medication. Cycleanine, a natural product, was reported to exert an antiproliferative effect on ovarian cancer cells by causing apoptosis through activation of caspases 3/7 and cleavage of poly (ADP-ribose) polymerase to form poly (ADP-ribose) polymerase-1 (PARP1). It is well-established that PARP1 is associated with carcinogenesis, and different PARP1 inhibitors are approved as anticancer drugs. In this study, the cytotoxic activity of cycleanine was computationally investigated to determine whether it is a PARP1 inhibitor or a caspase activator. Molecular docking and molecular dynamics (MD) simulations were utilized for this purpose. The results showed that cycleanine has a good binding affinity to PARP1; moreover, MD simulation showed that it forms a stable complex with the enzyme. Consequently, the results showed that cycleanine is a potential inhibitor of the PARP1 enzyme.
    Matched MeSH terms: Caspases
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links