Displaying publications 61 - 80 of 248 in total

Abstract:
Sort:
  1. Rahim Pouran S, Bayrami A, Mohammadi Arvanag F, Habibi-Yangjeh A, Darvishi Cheshmeh Soltani R, Singh R, et al.
    Colloids Surf B Biointerfaces, 2020 May;189:110878.
    PMID: 32087528 DOI: 10.1016/j.colsurfb.2020.110878
    In this research, a milk thistle seed extract (MTSE)-rich medium was used as a capping and reducing agent for the one-pot biosynthesis of ZnO/Ag (5 wt%) nanostructure. The sample was systematically characterized through various techniques and its strong biomolecule‒metal interface structure was supported by the results. The efficacy of the derived nanostructure (MTSE/ZnO/Ag) was evaluated in vivo on the basis of its therapeutic effects on the main complications of Type 1 diabetes (hyperglycemia, hyperlipidemia, and insulin deficiency). For this purpose, the changes in the plasma values of fasting blood glucose, total cholesterol, total triglyceride, high-density lipoprotein cholesterol, and insulin in alloxan-diabetic Wistar male rats were compared with those in healthy and untreated diabetic controls after a treatment period of 16 days. The antidiabetic results of MTSE/ZnO/Ag were compared with those obtained from pristine ZnO, MTSE, and insulin therapies. The health conditions of the rats with Type 1 diabetes were significantly enhanced after treatment with MTSE/ZnO/Ag (p 
    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy
  2. John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A
    Curr Med Chem, 2012;19(30):5181-6.
    PMID: 23237188
    Gestational diabetes (GD) is a common complication during pregnancy. Metabolic changes in GD affect fetal development and fetal glucose homeostasis. The present study utilized a rat model of GD to evaluate the effects of nicotinamide on diabetic parameters; antioxidant gene expression viz, superoxide dismutase (SOD) and catalase (CAT); reactive oxygen species (ROS) production by neutrophils and enhancement of lymphocyte mediated immune response. Nicotinamide (50, 100 and 200 mg/kg) was orally supplemented to gestational diabetic rats from days 6 through 20 of gestation. After GD induction, the control group had elevated glucose and reduced insulin while nicotinamide (100 & 200 mg/kg) supplementation reversed these changes. The same doses of nicotinamide upregulated mRNA expressions of SOD and CAT genes in liver but reduced the oxidative burst activity of neutrophils in response to phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP) or E. coli activation. Nicotinamide (100 & 200 mg/kg) supplementation also increased expression of activated T helper (CD4+CD25+) cells and induced proliferation of splenocytes. These findings provide evidence for utilizing nicotinamide as supplement or adjunct to support existing therapeutic agents for gestational diabetes and in pregnant individuals with weakened immune systems.
    Matched MeSH terms: Diabetes Mellitus, Experimental/immunology; Diabetes Mellitus, Experimental/metabolism; Diabetes Mellitus, Experimental/prevention & control*
  3. Okechukwu PN, Ekeuku SO, Chan HK, Eluri K, Froemming GRA
    Curr Pharm Biotechnol, 2021;22(2):288-298.
    PMID: 32744968 DOI: 10.2174/1389201021666200730124208
    BACKGROUND: Diabetes Mellitus (DM) is characterized by hyperglycemia (high blood glucose levels) which is due to the destruction of insulin-producing β-cells in the islets of Langerhans in the pancreas. It is associated with oxidative and endoplasmic reticulum stress. The plant alkaloid Palmatine has been previously reported to possess antidiabetic and antioxidant properties as well as other protective properties against kidney and liver tissue damage.

    OBJECTIVE: Here, we investigated the ability of Palmatine to reduce the up-regulation of chaperone proteins Glucose Regulatory Protein 78 (GRP78), and Calreticulin (CALR) protein in a Streptozotocin (STZ)-induced diabetic rat model.

    METHODS: Streptozotocin (STZ) induced diabetes in Sprague Dawley rats treated with 2mg/kg of Palmatine for 12 weeks after the elevation of plasma glucose levels above 11mmol/L post-STZ administration. Proteins were extracted from the pancreas after treatment and Two-Dimensional gel electrophoresis (2-DE), PDQuest 2-D analysis software genomic solutions and mass spectrometer were used to analyze differentially expressed protein. Mass Spectrometry (MS/MS), Multidimensional Protein Identification Technology (MudPIT) was used for protein identification.

    RESULTS: There was an up-regulation of the expression of chaperone proteins CALR and GRP78 and down-regulation of the expression of antioxidant and protection proteins peroxidoxin 4 (Prdx4), protein disulfide isomerase (PDIA2/3), Glutathione-S-Transferase (GSTs), and Serum Albumin (ALB) in non-diabetic rats. Palmatine treatment down-regulated the expression of chaperone proteins CALR and GRP78 and up-regulated the expression of Prdx4, PDIA2/3, GST, and ALB.

    CONCLUSION: Palmatine may have activated antioxidant proteins, which protected the cells against reactive oxygen species and endoplasmic stress. The result is in consonance with our previous report on Palmatine.

    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*
  4. Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, et al.
    Cytotherapy, 2015 Jan;17(1):46-57.
    PMID: 25457279 DOI: 10.1016/j.jcyt.2014.06.009
    Mesenchymal stromal cells (MSCs) have shown great promise for cell therapy of a wide range of diseases such as diabetes. However, insufficient viability of transplanted cells reaching to damaged tissues has limited their potential therapeutic effects. Expression of estrogen receptors on stem cells may suggest a role for 17β-estradiol (E2) in regulating some functions in these cells. There is evidence that E2 enhances homing of stem cells. Induction of hypoxia-inducible factor-1α (HIF-1α) by E2 and the profound effect of HIF-1α on migration of cells have previously been demonstrated. We investigated the effect of E2 on major mediators involved in trafficking and subsequent homing of MSCs both in vitro and in vivo in diabetic rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/therapy*
  5. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced*
  6. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Diabetes Res Clin Pract, 2006 Jul;73(1):1-7.
    PMID: 16378655 DOI: 10.1016/j.diabres.2005.11.004
    The present work examined ex vivo the acute effect of quercetin on diabetic rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the alpha(1)-adrenergic agonist phenylephrine (PE). Responses were compared to those of aortic rings from age- and sex-matched euglycemic rats. Compared to euglycemic rat aortic rings, diabetic rings showed less relaxation in response to ACh and SNP, and greater contraction in response to PE. Pretreatment with quercetin (10microM, 20min) increased ACh-induced relaxation and decreased PE-induced contraction in diabetic, but did not affect euglycemic rat aortic ring responses. Following pretreatment with the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME, 10microM), quercetin reduced PE-induced contractions in both aortic ring types, although l-NAME attenuated the reduction in the diabetic rings. Quercetin did not alter SNP vasodilatory effects in either ring type compared to their respective controls. These findings indicate that quercetin acutely improved vascular responsiveness in blood vessels from diabetic rats, and that these effects were mediated, at least in part, by enhanced endothelial nitric oxide bioavailability. These effects of quercetin suggest the possible beneficial effects of quercetin in vivo in experimental diabetes and possibly in other cardiovascular diseases.
    Matched MeSH terms: Diabetes Mellitus, Experimental/physiopathology*
  7. Noor H, Hammonds P, Sutton R, Ashcroft SJ
    Diabetologia, 1989 Jun;32(6):354-9.
    PMID: 2668082
    In Malaysia, Tinospora crispa extract is taken orally by Type 2 (non-insulin-dependent) diabetic patients to treat hyperglycaemia. We have evaluated the claimed hypoglycaemic property by adding aqueous extract to the drinking water of normal and alloxan-diabetic rats. After one week, fasting blood glucose levels were significantly (p less than 0.01) lower and serum insulin levels were significantly (p less than 0.01) higher in treated diabetic animals (10.4 +/- 1.0 mmol/l and 12.8 +/- 1.1 muU/ml respectively) compared to untreated diabetic controls (17.4 +/- 1.7 mmol/l and 8.0 +/- 0.7 muU/ml respectively). The insulinotropic action of T. crispa was further investigated in vitro using isolated human or rat islets of Langerhans and HIT-T15 cells. In static incubations with rat islets and HIT-T15 B cells, the extract induced a dosage dependent stimulation and potentiation of basal and glucose-stimulated insulin secretion respectively. This insulinotropic effect was also evident in perifused human and rat islets and HIT-T5 B-cells. The observations that (i) in all three models insulin secretory rates rapidly returned to basal levels on removal of the extract and (ii) in rat islets, a second challenge with T. crispa induced an additional, stimulated response, are all consistent with physiological release of insulin by B cells. Moreover, the rate of HIT-T15 glucose utilisation was not affected by incubation with T. crispa, suggesting that the cells were viable throughout. These are the first studies to provide biochemical evidence which substantiates the traditional claims for an oral hypoglycaemic effect of Tinospora crispa, and which also show that the hypoglycaemic effect is associated with increased insulin secretion.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/drug therapy*
  8. Chin CY, Ng PY, Ng SF
    Drug Deliv Transl Res, 2019 04;9(2):453-468.
    PMID: 29560587 DOI: 10.1007/s13346-018-0510-z
    Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications; Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/metabolism; Diabetes Mellitus, Experimental/pathology
  9. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al.
    Drug Deliv Transl Res, 2020 Feb;10(1):216-226.
    PMID: 31637677 DOI: 10.1007/s13346-019-00675-6
    Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications*; Diabetes Mellitus, Experimental/drug therapy; Diabetes Mellitus, Experimental/metabolism
  10. Zulkawi N, Ng KH, Zamberi NR, Yeap SK, Satharasinghe DA, Tan SW, et al.
    Drug Des Devel Ther, 2018;12:1373-1383.
    PMID: 29872261 DOI: 10.2147/DDDT.S157803
    Background: Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed.

    Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.

    Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.

    Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.

    Matched MeSH terms: Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*
  11. Malik A, Jamil U, Butt TT, Waquar S, Gan SH, Shafique H, et al.
    Drug Des Devel Ther, 2019;13:1501-1513.
    PMID: 31123393 DOI: 10.2147/DDDT.S176698
    Background: In silico characterization can help to explain the interaction between molecules and predict three-dimensional structures. Various studies have confirmed the glucose-lowering effects of plant extracts, ie, lupeol and iso-orientin, which enable them to be used as antidiabetic agents. Purpose: Aims of the present study were to evaluate the hypoglycemic activities of lupeol and iso-orientin in a rat model. The study proposed the effects of alloxan on blood glucose level, body weight, and oxidative stress. Materials and Methods: Thirty (n=30) Wistar albino rats were divided into six groups and were subjected to different combinations of the compounds. Levels of different stress markers, ie, malondialdehyde, superoxide dismutase, catalase, nitric oxide, glutathione, glutathione peroxide, glutathione reductase, and blood glucose levels were estimated with their respective methods. Whereas, for their in silico analysis, identified target proteins, GPR40, glucose-6-phosphatase, UCP2, glycogen phosphorylase, aldose reductase, and glucose transporter-4 were docked with lupeol and iso-orientin. Three-dimensional structures were predicted by ERRAT, Rampage, Verify3D, threading and homology approaches. Results: Blood glucose levels were significantly increased in rats receiving intraperitoneal injection of alloxan (208±6.94 mg/dL) as compared to controls (90±7.38 mg/dL). Infected rats were administered plant extracts; combined treatment of both extracts (lupeol+iso-orientin) significantly reduced the levels of blood glucose (129.06±6.29 mg/dL) and improved the antioxidant status. Fifteen structures of each selected protein were evaluated using various techniques. Consequently, satisfactory quality factors [GPR40 (96.41%), glucose-6-phosphatase (96.56%), UCP2 (72.56%), glycogen phosphorylase (87.24%), aldose reductase (82.46%), and glucose transporter-4 (94.29%)] were selected. Molecular docking revealed interacting residues, effective drug properties and their binding affinities (ie, -8.9 to -12.6 Kcal/mol). Conclusion: Results of the study affirmed the antidiabetic activities of lupeol and iso-orientin. Administration of these extracts (either individually or in combination) significantly reduced blood glucose levels and oxidative stress. Hence, it may be considered beneficial in the treatment of diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  12. Sheshala R, Peh KK, Darwis Y
    Drug Dev Ind Pharm, 2009 Nov;35(11):1364-74.
    PMID: 19832637 DOI: 10.3109/03639040902939213
    AIM: The aim of this study was to prepare insulin-loaded poly(lactic acid)-polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model.
    METHODS: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin 30/70 as a reference product in streptozotocin-induced diabetic rats.
    RESULTS: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 microm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix.
    CONCLUSIONS: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.
    Matched MeSH terms: Diabetes Mellitus, Experimental/blood; Diabetes Mellitus, Experimental/drug therapy*
  13. Idris MH, Budin SB, Osman M, Mohamed J
    EXCLI J, 2012;11:659-669.
    PMID: 27847454
    Diabetes mellitus contributes to male sexual dysfunction and infertility by modulating oxidative damage. To date, a number of studies have demonstrated antioxidant properties of Hibiscus sabdariffa Linn. This study was designed to investigate the effects of H. sabdariffa UKMR-2 variety on sperm functioning of streptozotocin-induced diabetic rats. Male Sprague-Dawley rats were allotted into four groups, namely control group (C), H. sabdariffa extract (HSE) group, diabetes group (D) and diabetes plus HSE group (D+HSE). HSE (100 mg/ kg/body weight) was administered orally for 28 consecutive days. After 28-days of supplementation, the rats were sacrificed to obtain epididymal sperm. Administration of HSE significantly lowered the level of fasting blood glucose and increased plasma insulin level in D+HSE group as compared to D group (p<0.05). Sperm quality in the D+HSE group was improved with significantly higher sperm concentrations (p<0.05) and sperm motility (p<0.001) as well as lower percentage of sperm abnormality (p<0.05) as compared to the diabetic group. Plasma follicle-stimulating hormone (FSH) level was significantly elevated (p<0.05) in D+HSE group than in D group while no significant alteration in plasma testosterone and luteinizing hormone (LH) level were seen between groups. In conclusion, this study suggested that H. sabdariffa UKMR-2 variety has a potential protective role against diabetes-induced sperm damage.
    Matched MeSH terms: Diabetes Mellitus, Experimental
  14. Eleazu C, Ekeleme CE, Famurewa A, Mohamed M, Akunna G, David E, et al.
    PMID: 30659555 DOI: 10.2174/1871530319666190119101058
    BACKGROUND: Research studies that holistically investigated the effect of administration of Virgin Coconut Oil (VCO) on diabetic humans or animals are limited in literature.

    OBJECTIVE: To investigate the effect of administration of VCO on lipid profile, markers of hepatic and renal dysfunction, and hepatic and renal antioxidant activities of alloxan induced diabetic rats.

    METHODS: Twenty-four male albino rats were used, and they were divided into four groups of six rats each. Group 1 (Normal Control, NC) received distilled water (1 mL/kg); Group 2 (VCO Control) received VCO (5 mL/kg); Group 3 (Diabetic Control, DC) received distilled water (1 mL/kg); Group 4 (Test Group, TG) received 5 ml/kg of VCO.

    RESULTS: There were no significant differences in blood glucose, body weights, relative liver weights, relative kidney weights, hepatic and renal Superoxide Dismutase (SOD) activities, Malondialdehyde (MDA), albumin, aspartate Amino Transaminase (AST), alanine Amino Transaminase (ALT), Alkaline Phosphatase (ALP), urea, creatinine, uric acid, total cholesterol, triacylglycerol, Very Low Density Lipoprotein cholesterol (VLDL) and Low Density Lipoprotein cholesterol (LDL) concentrations; significant increases in renal Glutathione (GSH), hepatic catalase, Glutathione Peroxidase (GPx) and GSH but significant reduction in renal GPx and catalase activities of VCO control group compared with NC group. There were significant increases in blood glucose, relative liver and kidney weights, hepatic GPx, hepatic and renal MDA concentration, ALP, AST, ALT, urea, creatinine, uric acid, triacylglycerol, total cholesterol, LDL and VLDL concentrations; and significant decreases in body weight, hepatic SOD and GSH activities and albumin concentration but no significant difference in hepatic catalase activity of DC group compared with NC group. Administration of VCO to diabetic rats positively modulated these parameters compared with the diabetic control.

    CONCLUSION: The study showed the potentials of VCO in the management of hyperlipidemia, renal and hepatic dysfunctions imposed by hyperglycemia and by oxidative stress in diabetic rats.

    Matched MeSH terms: Diabetes Mellitus, Experimental/blood*; Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*
  15. Jana S, Gayen S, Gupta BD, Singha S, Mondal J, Kar A, et al.
    PMID: 37691221 DOI: 10.2174/1871530323666230907115818
    BACKGROUND: The medicinal plants of the Cucurbitaceae family, such as Solena heterophylla Lour. fruits, have significant ethnobotanical value and are readily accessible in North East India.

    AIMS: We conducted a study on Solena heterophylla Lour. fruits to evaluate their anti-diabetic activity in vivo, standardize their HPTLC, and profile their metabolites using LC-QTOF-MS. We aimed to explore the molecular mechanism behind their effects on oxidative stress and glycosylated hemoglobin (HbA1c).

    METHODS: Firstly, the ethyl acetate fraction of Solena heterophylla Lour. fruits was standardized using Cucurbitacin B as a standard marker by conducting HPTLC evaluation. Next, we delved into analyzing metabolite profiling. In addition, the standardized fraction was utilized in an experimental study to investigate the molecular mechanism of action in an in vivo high-fat diet and a low dose of streptozotocin-induced diabetic model.

    RESULTS: We have reportedly identified 52 metabolites in the ethyl acetate fraction of Solena heterophylla (EASH). In the in vitro tests, it has been observed that this extract from plants possesses notable inhibitory properties against α-amylase and α-glucosidase. Solena heterophylla fruits with high levels of Cucurbitacin B (2.29% w/w) helped lower FBG levels in animals with EASH treatment. EASH treatment reduced HbA1c levels and normalized liver lipid peroxidation and antioxidant enzyme levels. SGOT, SGPT, and SALP serum enzyme levels also returned to normal.

    CONCLUSION: Based on the current evaluation, it was found that EASH exhibited encouraging hypoglycemic effects in diabetic rats induced by a low dose of STZ and high-fat diet, which warrants further investigation.

    Matched MeSH terms: Diabetes Mellitus, Experimental*
  16. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*
  17. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/pathology*
  18. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK
    Eur J Pharmacol, 2011 Jul 1;661(1-3):15-21.
    PMID: 21536024 DOI: 10.1016/j.ejphar.2011.04.014
    Painful neuropathy, a common complication of diabetes mellitus is characterized by allodynia and hyperalgesia. Recent studies emphasized on the role of non-neuronal cells, particularly microglia in the development of neuronal hypersensitivity. The purpose of the present study is to evaluate the effect of minocyline, a selective inhibitor of microglial activation to define the role of neuroimmune activation in experimental diabetic neuropathy. Cold allodynia and thermal and chemical hyperalgesia were assessed and the markers of inflammation and oxidative and nitrosative stress were estimated in streptozotocin-induced diabetic rats. Chronic administration of minocycline (40 and 80 mg/kg, i.p.) for 2 weeks started 2 weeks after diabetes induction attenuated the development of diabetic neuropathy as compared to diabetic control animals. In addition, minocyline treatment reduced the levels of interleukin-1β and tumor necrosis factor-α, lipid peroxidation, nitrite and also improved antioxidant defense in spinal cords of diabetic rats as compared to diabetic control animals. In contrast, minocycline (80 mg/kg, per se) had no effect on any of these behavioral and biochemical parameters assessed in age-matched control animals. The results of the present study strongly suggest that activated microglia are involved in the development of experimental diabetic neuropathy and minocycline exerted its effect probably by inhibition of neuroimmune activation of microglia. In addition, the beneficial effects of minocycline are partly mediated by its anti-inflammatory effect by reducing the levels of proinflammatory cytokines and in part by modulating oxidative and nitrosative stress in the spinal cord that might be involved in attenuating the development of behavioral hypersensitivity in diabetic rats.
    Matched MeSH terms: Diabetes Mellitus, Experimental/complications
  19. Dharmani M, Mustafa MR, Achike FI, Sim MK
    Eur J Pharmacol, 2007 Apr 30;561(1-3):144-50.
    PMID: 17320855
    Angiotensin 1-7, a heptapeptide derived from metabolism of either angiotensin I or angiotensin II, is a biologically active peptide of the renin-angiotensin system. The present study investigated the effect of angiotensin 1-7 on the vasopressor action of angiotensin II in the renal and mesenteric vasculature of Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR) and streptozotocin-induced diabetic rats. Angiotensin II-induced dose-dependent vasoconstrictions in the renal vasculature. The pressor response was enhanced in the SHR and reduced in the streptozotocin-diabetic rat compared to WKY rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in the renal vasculature of WKY and SHR rats. However, the ability to reduce angiotensin II response was diminished in diabetic-induced rat kidneys. The effect of angiotensin 1-7 was not inhibited by 1-[(4-(Dimethylamino)-3-methylphenyl] methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319), an angiotensin AT(2) receptor antagonist. (D-ALA(7))-Angiotensin I/II (1-7) (D-ALA) (an angiotensin 1-7 receptor antagonist), indomethacin (a cyclo-oxygenase inhibitor), and N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)(a nitric oxide synthetase inhibitor) abolished the attenuation by angiotensin 1-7 in both WKY rats and SHR, indicating that its action is mediated by angiotensin 1-7 receptor that is either coupled to the release of prostaglandins and/or nitric oxide. The vasopressor responses to angiotensin II in mesenteric vasculature bed was also dose-dependent but smaller in magnitude compared to the renal vasculature. The responses to angiotensin II were relatively smaller in SHR but no significant difference was observed between WKY and streptozotocin-induced diabetic rats. Angiotensin 1-7 attenuated the angiotensin II pressor responses in WKY, SHR and diabetic-induced mesenteric bed. The attenuation was observed at the lower concentrations of angiotensin II in WKY and diabetic-induced rats but at higher concentrations in SHR. Similar observation as in the renal vasculature was seen with PD123319, D-ALA, and L-NAME. Indomethacin reversed the attenuation by angiotensin 1-7 only in the SHR mesenteric vascular bed. The present findings support the regulatory role of angiotensin 1-7 in the renal and mesenteric vasculature, which is differentially altered in hypertension and diabetes.
    Matched MeSH terms: Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/physiopathology
  20. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur J Pharmacol, 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
    Matched MeSH terms: Diabetes Mellitus, Experimental/enzymology; Diabetes Mellitus, Experimental/metabolism*; Diabetes Mellitus, Experimental/pathology; Diabetes Mellitus, Experimental/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links