MATERIALS & METHODS: F-BC-MTX-LPHNPs were fabricated using self-assembled nano-precipitation technique. Fructose was conjugated on the surface of the particles. The in vitro cytotoxicity, sub-cellular localization and apoptotic activity of F-BC-MTX-LPHNPs were evaluated against MCF-7 breast cancer cells. The antitumor potential of F-BC-MTX-LPHNPs was further studied.
RESULTS & CONCLUSION: Outcomes suggested that F-BC-MTX-LPHNPs induced the highest apoptosis index (0.89) against MCF-7 cells. Following 30 days of treatment, the residual tumor progression was assessed to be approximately 32%, in animals treated with F-BC-MTX-LPHNPs. F-BC-MTX-LPHNPs are competent to selectively convey the chemotherapeutic agent to the breast cancers. Beta carotene ameliorated MTX-induced hepatic and renal toxicity.
METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages.
RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls.
CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.
MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.
RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.