Displaying publications 1 - 20 of 214 in total

Abstract:
Sort:
  1. Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ
    Sci Rep, 2023 Jul 27;13(1):12180.
    PMID: 37500670 DOI: 10.1038/s41598-023-38054-4
    Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited. The development of nanodelivery platform, namely Sorafenib-loaded chitosan nanoparticles (SF-CS NPs), was constructed in order to improve SF drug delivery to human Hepatocellular Carcinoma (HepG2) cell lines. The NPs were artificially fabricated using an ionic gelation technique. A number of CS NPs that had been loaded with an SF were prepared using different concentrations of sodium tripolyphosphate (TPP). These concentrations were 2.5, 5, 10, and 20 mg/mL, and they are abbreviated as SF-CS NPs 2.5, SF-CS NPs 5.0, SF-CS NPs 10, and SF-CS NPs 20 respectively. DLS, FTIR, XRD, HRTEM, TGA, and FESEM with EDX and TEM were used for the physiochemical characterisation of SF-CS NPs. Both DLS and HRTEM techniques demonstrated that smaller particles were produced when the TPP content was raised. In a PBS solution with a pH of 4.5, the SF exhibited efficient release from the nanoparticles, demonstrating that the delivery mechanism is effective for tumour cells. The cytotoxicity investigation showed that their anticancer effect against HepG2 cell lines was significantly superior than that of free SF. In addition, the nanodrug demonstrated an absence of any detectable toxicity to normal adult human dermal fibroblast (HDFa) cell lines. This is a step towards developing a more effective anticancer medication delivery system with sustained-release characteristics, which will ultimately improve the way cancer is managed.
    Matched MeSH terms: Drug Carriers/chemistry
  2. Stephen S, Gorain B, Choudhury H, Chatterjee B
    Drug Deliv Transl Res, 2022 Jan;12(1):105-123.
    PMID: 33604837 DOI: 10.1007/s13346-021-00935-4
    The biocompatible nature of mesoporous silica nanoparticles (MSN) attracted researchers' attention to deliver therapeutic agents in the treatment of various diseases, where their porous nature, high drug loading efficiency, and suitability to functionalize with a specific ligand of MSN helped to obtain the desired outcome. The application of MSN has been extended to deliver small chemicals to large-sized peptides or proteins to fight against complex diseases. Recently, formulation researches with MSN have been progressed for various non-conventional drug delivery systems, including liposome, microsphere, oro-dispersible film, 3D-printed formulation, and microneedle. Low bulk density, retaining mesoporous structure during downstream processing, and lack of sufficient in vivo studies are some of the important issues towards the success of mesoporous silica-based advanced drug delivery systems. The present review has aimed to evaluate the application of MSN in advanced drug delivery systems to critically analyze the role of MSN in the respective formulation over other functionalized polymers. Finally, an outlook on the future direction of MSN-based advanced drug delivery systems has been drawn against the existing challenges with this platform.
    Matched MeSH terms: Drug Carriers/chemistry
  3. Kaur J, Gulati M, Corrie L, Awasthi A, Jha NK, Chellappan DK, et al.
    Nanomedicine (Lond), 2022 Oct;17(25):1951-1960.
    PMID: 36606499 DOI: 10.2217/nnm-2022-0260
    The prevalence of lung diseases is increasing year by year and existing drug therapies only provide symptomatic relief rather than targeting the actual cause. Nucleic acids can be used as an alternative therapeutic approach owing to their potential to reform a homeostatic balance by upregulating protective genes or downregulating damaging genes. However, their inherent properties, such as poor stability, ineffective cellular uptake, negative charge and so on, hinder their clinical utility. Such limitations can be overcome by exploiting the functional chemistry of polymeric micelles (PMs) for site-specific delivery, transfection efficiency and improved stability. With this objective, the present work describes the advancements made in designing nucleic acid-based PMs for treating lung diseases followed by approaches requiring consideration for clinical applications.
    Matched MeSH terms: Drug Carriers/chemistry
  4. Kesavan S, Rajesh D, Shanmugam J, Aruna S, Gopal M, Vijayakumar S
    Int J Biol Macromol, 2023 Jul 31;244:125322.
    PMID: 37307980 DOI: 10.1016/j.ijbiomac.2023.125322
    A graphene oxide mediated hybrid nano system for pH stimuli-responsive and in vitro drug delivery targeted for cancer was described in this study. Graphene oxide (GO) functionalized Chitosan (CS) mediated nanocarrier capped with xyloglucan (XG) was fabricated with and without Kappa carrageenan (κ-C) from red seaweed, Kappaphycus alverzii, as an active drug. FTIR, EDAX, XPS, XRD, SEM and HR-TEM studies were carried out for GO-CS-XG nanocarrier loaded with and without active drugs to understand the physicochemical properties. XPS (C1s, N1s and O1s) confirmed the fabrications of XG and functionalization of GO by CS via the binding energies at 284.2 eV, 399.4 eV and 531.3 eV, respectively. The amount of drug loaded in vitro was 0.422 mg/mL. The GO-CS-XG nanocarrier showed a cumulative drug release of 77 % at acidic pH 5.3. In contrast to physiological conditions, the release rate of κ-C from the GO-CS-XG nanocarrier was considerably higher in the acidic condition. Thus, a pH stimuli-responsive anticancer drug release was successfully achieved with the GO-CS-XG-κ-C nanocarrier system for the first time. The drug release mechanism was carried out using various kinetic models that showed a mixed release behavior depending on concentration and diffusion/swelling mechanism. The best-fitting model which supports our release mechanism are zero order, first order and Higuchi models. GO-CS-XG and κ-C loaded nanocarrier biocompatibility were determined by in vitro hemolysis and membrane stabilization studies. MCF-7 and U937 cancer cell lines were used to study the cytotoxicity of the nanocarrier by MTT assay, which indicates excellent cytocompatibility. These findings support the versatile use of a green renewable biocompatible GO-CS-XG nanocarrier as targeted drug delivery and potential anticancer agent for therapeutic purposes.
    Matched MeSH terms: Drug Carriers/chemistry
  5. Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2023 Nov;396(11):2769-2792.
    PMID: 37219615 DOI: 10.1007/s00210-023-02522-5
    Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Drug Carriers/chemistry
  6. Shamsuddin NAM, Zulfakar MH
    Curr Drug Deliv, 2023;20(2):127-143.
    PMID: 35331113 DOI: 10.2174/1567201819666220324094234
    Natural products contain bioactive compounds that are produced naturally via synthetic or semisynthetic processes. These bioactive compounds play significant biological roles, especially for growth as well as in defense mechanisms against pathogens. Bioactive compounds in natural products have been extensively studied in recent decades for their pharmacological activities, such as anticancer, wound healing, anti-microbial, anti-inflammatory, and anti-oxidative properties. However, their pharmaceutical significance has always been hindered by their low bioavailability and instability with variations in pH, temperature, and exposure to light. Nanotechnology paves the way for the development of drug delivery systems by enhancing therapeutic efficacy. Nanostructured lipid carriers, a lipidbased drug delivery system, are recently being studied to improve the biocompatibility, biodegradability, bioavailability, solubility, permeability, and shelf life of bioactive compounds in the pharmaceutical industry. The ideal component and preparation method for bioactive compounds in nanostructured lipid carrier development is necessary for their physicochemical properties and therapeutic efficiency. Therefore, this review seeks to highlight recent developments, preparation, and application of nanostructured lipid carriers as carriers for natural bioactive compounds in improving their therapeutic potential in drug delivery systems.
    Matched MeSH terms: Drug Carriers/chemistry
  7. Budiman A, Rusdin A, Subra L, Aulifa DL
    Int J Nanomedicine, 2023;18:5473-5493.
    PMID: 37791322 DOI: 10.2147/IJN.S426120
    In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
    Matched MeSH terms: Drug Carriers/chemistry
  8. Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S
    Int J Biol Macromol, 2023 Jul 15;243:125125.
    PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125
    Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
    Matched MeSH terms: Drug Carriers/chemistry
  9. Khan MS, Gowda BHJ, Nasir N, Wahab S, Pichika MR, Sahebkar A, et al.
    Int J Pharm, 2023 Aug 25;643:123276.
    PMID: 37516217 DOI: 10.1016/j.ijpharm.2023.123276
    Breast cancer is the most prevalent type of cancer worldwide,particularly among women, with substantial side effects after therapy. Despite the availability of numerous therapeutic approaches, particularly chemotherapy, the survival rates for breast cancer have declined over time. The therapies currently utilized for breast cancer treatment do not specifically target cancerous cells, resulting in significant adverse effects and potential harm to healthy cells alongside the cancer cells. As a result, nanoparticle-based drug delivery systems have emerged. Among various types of nanoparticles, natural polysaccharide-based nanoparticles have gained significant attention due to their ability to precisely control the drug release and achieve targeted drug delivery. Moreover, polysaccharides are biocompatible, biodegradable, easily modifiable, and renewable, which makes them a unique material for nanoformulation. In recent years, dextran and its derivatives have gained much interest in the field of breast cancer therapy. Dextran is a hydrophilic polysaccharide composed of a main chain formed by α-1,6 linked glucopyranoside residues and a side chain composed of residues linked in α-1,2/3/4 positions. Different dextran-antitumor medication conjugates enhancethe efficacy of anticancer agents. With this context, the present review provides brief insights into dextran and its modification. Further, it meticulously discusses the role of dextran-based nanoparticles in breast cancer therapy and imaging, followed by snippets on their toxicity. Lastly, it presents clinical trials and future perspectives of dextran-based nanoparticles in breast cancer treatment.
    Matched MeSH terms: Drug Carriers/chemistry
  10. Paramjot, Wadhwa S, Sharma A, Singh SK, Vishwas S, Kumar R, et al.
    Curr Drug Deliv, 2024;21(1):16-37.
    PMID: 36627785 DOI: 10.2174/1567201820666230110140312
    Amongst different routes of drug delivery systems, ophthalmic drug delivery still requires a careful investigation and strict parameter measurements because the eyes are one of the most sensitive parts of the body and require special attention. The conventional systems for eyes lead to rapid elimination of formulation and hence very small contact time on the ocular epithelium. The current review article covers various types of polymers used in ocular drug delivery along with their applications/ limitations. Polymers are widely used by researchers in prodrug techniques and as a penetration enhancer in ocular delivery. This article covers the role and use of different polymeric systems which makes the final formulation a promising candidate for ophthalmic drug delivery. The researchers are still facing multiple challenges in order to maintain the therapeutic concentration of the drug in the eyes because of its complex structure. There are several barriers that further restrict the intraocular entry of the drug. In order to remove/reduce such challenges, these days various types of polymers are used for ocular delivery in order to develop different drug carrier systems for better efficacy and stability. The polymers used are highly helpful in increasing residence time by increasing the viscosity at the ocular epithelium layer. Such preparations also get easily permeated in ocular cells. The combination of different polymeric properties makes the final formulation stable with prolonged retention, high viscosity, high permeability, and better bioavailability, making the final formulation a promising candidate for ocular drug delivery.
    Matched MeSH terms: Drug Carriers/chemistry
  11. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2023 Nov 14;28(22).
    PMID: 38005306 DOI: 10.3390/molecules28227585
    α-mangostin (AM) is a promising natural anticancer agent that can be used in cancer research. However, its effectiveness can be limited by poor solubility and bioavailability. To address this issue, chitosan-based nanoparticles (CSNPs) have been investigated as a potential delivery system to enhance the cytotoxicity to cancer cells and improve selectivity against normal cells. In this study, we developed folate-conjugated chitosan nanoparticles (F-CS-NPs) using a carbodiimide-based conjugation method to attach folate to chitosan (CS), which have different molecular weights. The NPs were crosslinked using tripolyphosphate (TPP) via ionic gelation. To characterize the F-CS-NPs, we utilized various analytical techniques, including transmission electron microscopy (TEM) to evaluate the particle size and morphology, Fourier-transform infrared spectroscopy (FTIR) to confirm the presence of functional groups, and ultraviolet-visible spectroscopy (UV-Vis) to measure the absorption spectrum and confirm the presence of folate. The particle size of AM-F-CS-NPs ranged from 180 nm to 250 nm, with many having favorable charges ranging from +40.33 ± 3.4 to 10.69 ± 1.3 mV. All NPs exhibited the same spherical morphology. The use of F-CS-NPs increased drug release, followed by a sustained release pattern. We evaluated the cytotoxicity of AM, AM-F-CS-HMW, and AM-F-CS-LMW NPs against MCF-7 cells and found IC50 values of 8.47 ± 0.49, 5.3 ± 0.01, and 4.70 ± 0.11 µg/mL, respectively. These results confirm the improved cytotoxicity of AM in MCF-7 cells when delivered via F-CS-NPs. Overall, our in vitro study demonstrated that the properties of F-CS-NPs greatly influence the cytotoxicity of AM in MCF-7 breast cancer cells (significantly different (p < 0.05)). The use of F-CS-NPs as a drug-delivery system for AM may have the potential to develop novel therapies for breast cancer.
    Matched MeSH terms: Drug Carriers/chemistry
  12. Liu A, He M, Liu C, Ye Z, Tan CP, Liu Y, et al.
    J Agric Food Chem, 2024 Mar 27;72(12):6118-6132.
    PMID: 38477232 DOI: 10.1021/acs.jafc.3c08697
    Cardiovascular diseases are caused by hypercholesterolemia. Astaxanthin (AST) has been reported to exhibit antioxidant and anti-inflammatory properties. However, its bioavailability is poor because of low solubility and instability. In order to improve the bioavailability of AST, we developed an intestinal-responsive composite carrier termed as "liposomes in micropheres" incorporating N-succinyl-chitosan (NSC)-poly(ethylene glycol) (PEG) liposomes that functionalized by neonatal Fc receptors (FcRn) into hydrogels of sodium alginate (SA) and carboxymethyl chitosan (CMCS). In the AST NSC/HSA-PEG liposomes@SA/CMCS microspheres, the AST's encapsulation efficiency (EE) was 96.26% (w/w) and its loading capacity (LC) was 6.47% (w/w). AST NSC/HSA-PEG liposomes had stability in the gastric conditions and achieved long-term release of AST in intestinal conditions. Then, AST NSC/HSA-PEG liposomes@SA/CMCS bind to intestinal epithelial cell targets by the neonatal Fc receptor. In vitro permeation studies show that there was a 4-fold increase of AST NSC/HSA-PEG liposomes@SA/CMCS in AST permeation across the intestinal epithelium. Subsequent in vivo experiments demonstrated that the composite carrier exhibited a remarkable mucoadhesive capacity, allowing for extended intestinal retention of up to 12 h, and it displayed deep penetration through the mucus layer, efficiently entering the intestinal villi epithelial cells, and enhancing the absorption of AST and its bioavailability in vivo. And oral administration of AST NSC/HSA-PEG liposomes@SA/CMCS could effectively prevent hypercholesterolemia caused by a high-fat, high-cholesterol diet (HFHCD). These advancements highlight the potential of NSC/HSA-PEG liposomes@SA/CMCS composite carriers for targeted and oral uptake of hydrophobic bioactives.
    Matched MeSH terms: Drug Carriers/chemistry
  13. Sharma PA, Maheshwari R, Tekade M, Tekade RK
    Curr Pharm Des, 2015;21(30):4465-78.
    PMID: 26354926
    The increasing prevalence and complexity of cardiovascular diseases demand innovative strategies for diagnostic and therapeutic applications to improve patient care/prognoses. Additionally, various factors constrain present cardiovascular therapies, including low aqueous drug solubility, early metabolism, short half-life and drug delivery limitations. The efficient treatment of cardiovascular diseases requires improvement of traditional drug delivery systems. This can be accomplished by using novel nanomaterial that can incorporate diverse bio-actives along with diagnostic agents in a single carrier, referred to as theranostics. This review discusses the state of the art in the applications to diagnosis and therapy of innovative, nanomaterial- based strategies such as lipid based carriers, nanocapsules, magnetic nanoparticles, gold nanoparticles, protein conjugated nanoparticles, dendrimers and carbon-based nanoformulations with a special emphasis on how they can contribute to improving the management of cardiovascular disease.
    Matched MeSH terms: Drug Carriers/chemistry
  14. Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, et al.
    Int J Pharm, 2017 Aug 30;529(1-2):506-522.
    PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018
    Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
    Matched MeSH terms: Drug Carriers/chemistry*
  15. Almoustafa HA, Alshawsh MA, Chik Z
    Int J Pharm, 2017 Nov 25;533(1):275-284.
    PMID: 28943210 DOI: 10.1016/j.ijpharm.2017.09.054
    Nanoprecipitation is a simple and increasingly trending method for nanoparticles preparation. The self-assembly feature of poly (ethylene glycol)-poly (lactide-co-glycolic acid) (PEG-PLGA) amphiphilic copolymer into a nanoparticle and its versatile structure makes nanoprecipitation one of the best methods for its preparation. The aim of this study is to review currently available literature for standard preparation of PEG-PLGA nanoparticles using nanoprecipitation technique in order to draw conclusive evidenceto draw conclusive evidence that can guide researchers during formulation development. To achieve this, three databases (Web of Science, Scopus and PubMed) were searched using relevant keywords and the extracted articles were reviewed based on defined inclusion and exclusion criteria. Data extraction and narrative analysis of the obtained literature was performed when appropriate, along with our laboratory observations to support those claims wherever necessary. As a result of this analysis, reports that matched our criteria conformed to the general facts about nanoprecipitation techniques such as simplicity in procedure, low surfactants requirement, narrow size distribution, and low resulting concentrations. However, these reports showed interesting advantages for using PEG-PLGA as they are frequently reported to be freeze-dried and active pharmaceutical ingredients (APIs) with low hydrophobicity were reported to successfully be encapsulated in the particles.
    Matched MeSH terms: Drug Carriers/chemistry*
  16. Azmi ID, Wibroe PP, Wu LP, Kazem AI, Amenitsch H, Moghimi SM, et al.
    J Control Release, 2016 Oct 10;239:1-9.
    PMID: 27524284 DOI: 10.1016/j.jconrel.2016.08.011
    Non-lamellar liquid crystalline aqueous nanodispersions, known also as ISAsomes (internally self-assembled 'somes' or nanoparticles), are gaining increasing interest in drug solubilisation and bio-imaging, but they often exhibit poor hemocompatibility and induce cytotoxicity. This limits their applications in intravenous drug delivery and targeting. Using a binary mixture of citrem and soy phosphatidylcholine (SPC) at different weight ratios, we describe a library of colloidally stable aqueous and hemocompatible nanodispersions of diverse nanoarchitectures (internal self-assembled nanostructures). This engineered library is structurally stable in human plasma as well as being hemocompatible (non-hemolytic, and poor activator of the complement system). By varying citrem to lipid weight ratio, the nanodispersion susceptibility to macrophage uptake could also be modulated. Finally, the formation of nanodispersions comprising internally V2 (inverse bicontinuous cubic) and H2 (inverse hexagonal) nanoarchitectures was achieved without the use of an organic solvent, a secondary emulsifier, or high-energy input. The tunable binary citrem/SPC nanoplatform holds promise for future development of hemocompatible and immune-safe nanopharmaceuticals.
    Matched MeSH terms: Drug Carriers/chemistry*
  17. Ayumi NS, Sahudin S, Hussain Z, Hussain M, Samah NHA
    Drug Deliv Transl Res, 2019 04;9(2):482-496.
    PMID: 29569027 DOI: 10.1007/s13346-018-0508-6
    To investigate the use of chitosan nanoparticles (CS-TPP-NPs) as carriers for α- and β-arbutin. In this study, CS-TPP-NPs containing α- and β-arbutin were prepared via the ionic cross-linking of CS and TPP and characterized for particle size, zeta potential, and dispersity index. The entrapment efficiency and loading capacity of various β-arbutin concentrations (0.1, 0.2, 0.4, 0.5, and 0.6%) were also investigated. SEM, TEM FTIR, DSC and TGA analyses of the nanoparticles were performed to further characterize the nanoparticles. Finally, stability and release studies were undertaken to ascertain further the suitability of the nanoparticles as a carrier system for α- and β-arbutin. Data obtained clearly indicates the potential for use of CS-TPP-NPs as a carrier for the delivery of α- and β-arbutin. The size obtained for the alpha nanoparticles (α-arbutin CSNPs) ranges from 147 to 274 d.nm, with an increase in size with increasing alpha arbutin concentration. β-arbutin nanoparticles (β-arbutin CSNPs) size range was from 211.1 to 284 dn.m. PdI for all nanoparticles remained between 0.2-0.3 while the zeta potential was between 41.6-52.1 mV. The optimum encapsulation efficiency and loading capacity for 0.4% α-arbutin CSNPs were 71 and 77%, respectively. As for β-arbutin, CSNP optimum encapsulation efficiency and loading capacity for 0.4% concentration were 68 and 74%, respectively. Scanning electron microscopy for α-arbutin CSNPs showed a more spherical shape compared to β-arbutin CSNPs where rod-shaped particles were observed. However, under transmission electron microscopy, the shapes of both α- and β-arbutin CSNP nanoparticles were spherical. The crystal phase identification of the studied samples was carried out using X-ray diffraction (XRD), and the XRD of both α and β-arbutin CSNPs showed to be more crystalline in comparison to their free form. FTIR spectra showed intense characteristic peaks of chitosan appearing at 3438.3 cm-1 (-OH stretching), 2912 cm-1 (-CH stretching), represented 1598.01 cm-1 (-NH2) for both nanoparticles. Stability studies conducted for 90 days revealed that both α- and β-arbutin CSNPs were stable in solution. Finally, release studies of both α- and β-arbutin CSNPs showed a significantly higher percentage release in comparison to α- and β-arbutin in their free form. Chitosan nanoparticles demonstrate considerable promise as a carrier system for α- and β-arbutin, the use of which is anticipated to improve delivery of arbutin through the skin, in order to improve its efficacy as a whitening agent.
    Matched MeSH terms: Drug Carriers/chemistry*
  18. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V
    Drug Discov Today, 2019 07;24(7):1405-1412.
    PMID: 31102731 DOI: 10.1016/j.drudis.2019.05.004
    Lyotropic nonlamellar liquid crystalline nanoparticles (NPs) (LCN), such as cubosomes and hexosomes, are useful tools for applications in drug delivery because of their unique structural properties. LCNs are highly versatile carriers that can be applied for use with topical, oral, and intravenous treatments. In recent years, significant research has focused on improving their preparation and characterization, including controlling drug release and enhancing the efficacy of loaded bioactive molecules. Nevertheless, the clinical translation of LCN-based carriers has been slow. In this review, we highlight recent advances and challenges in the development and application of LCN, providing examples of their topical, oral, and intravenous drug delivery applications, and discussing translational obstacles to LCN as a NP technology.
    Matched MeSH terms: Drug Carriers/chemistry
  19. Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, et al.
    Chem Biol Interact, 2022 Dec 01;368:110238.
    PMID: 36306865 DOI: 10.1016/j.cbi.2022.110238
    Polysaccharides (PS) represent a broad class of polymer-based compounds that have been extensively researched as therapeutics and excipients for drug delivery. As pharmaceutical carriers, PS have mostly found their use as adsorbents, suspending agents, as well as cross-linking agents for various formulations such as liposomes, nanoparticles, nanoemulsions, nano lipid carriers, microspheres etc. This is due to inherent properties of PS such as porosity, steric stability and swellability, insolubility in pH. There have been emerging reports on the use of PS as therapeutic agent due to its anti-inflammatory and anti-oxidative properties for various diseases. In particular, for Crohn's disease, ulcerative colitis and inflammatory bowel disease. However, determining the dosage, treatment duration and effective technology transfer of these therapeutic moieties have not occurred. This is due to the fact that PS are still at a nascent stage of development to a full proof therapy for a particular disease. Recently, a combination of polysaccharide which act as a prebiotic and a probiotic have been used as a combination to treat various intestinal and colorectal (CRC) related diseases. This has proven to be beneficial, has shown good in vivo correlation and is well reported. The present review entails a detailed description on the role of PS used as a therapeutic agent and as a formulation pertaining to gastrointestinal diseases.
    Matched MeSH terms: Drug Carriers/chemistry
  20. Bera H, Kumar S
    Int J Biol Macromol, 2018 Mar;108:1053-1062.
    PMID: 29122714 DOI: 10.1016/j.ijbiomac.2017.11.019
    The current study aimed at developing diethonolamine-modified high-methoxyl pectin (DMP)-alginate (ALG) based core-shell composites for controlled intragastric delivery of metformin HCl (MFM) by combined approach of floating and bioadhesion. DMP with degree of amidation of 48.72% was initially accomplished and characterized by FTIR, DSC and XRD analyses. MFM-loaded core matrices were then fabricated by ionotropic gelation technique employing zinc acetate as cross-linker. The core matrices were further coated by fenugreek gum (FG)-ALG gel membrane via diffusion-controlled interfacial complexation method. Various formulations demonstrated excellent drug encapsulation efficiency (DEE, 51-70%) and sustained drug eluting behavior (Q8h, 72-96%), which were extremely influenced by polymer-blend (ALG:DMP) ratios, low density additives (olive oil/magnesium stearate) and FG-ALG coating inclusion. The drug release profile of the core-shell matrices (F-7) was best fitted in zero-order kinetic model with case-II transport driven mechanism. It also portrayed outstanding gastroretentive characteristics. Moreover, the composites were analyzed for surface morphology, drug-excipients compatibility, thermal behavior and drug crystallinity. Thus, the developed composites are appropriate for controlled stomach-specific delivery of MFM for type 2 diabetes management.
    Matched MeSH terms: Drug Carriers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links