Displaying publications 61 - 80 of 6929 in total

Abstract:
Sort:
  1. Maulida S, Eriani K, Fadli N, Siti-Azizah MN, Kocabas FK, Kocabas M, et al.
    Cryobiology, 2024 Mar;114:104851.
    PMID: 38237749 DOI: 10.1016/j.cryobiol.2024.104851
    Sperm quality is preserved through the crucial involvement of antioxidants, which play a vital role in minimizing the occurrence of reactive oxygen species (ROS) during the cryopreservation process. The suitability of the type and concentration of antioxidants are species-dependent, and this study is crucial in order to improve the quality of the climbing perch sperm post-cryopreservation. Therefore, this study aimed to determine the best type and concentration of antioxidants for cryopreservation of climbing perch Anabas testudineus sperm. To achieve this, 6 types of antioxidants, namely, ascorbic acid, beta-carotene, glutathione, butylated hydroxytoluene (BHT), myo-inositol, and alpha-tocopherol, with inclusion of a control were tested in 3 replications at three concentration levels of 0 mg/L (control), 20 mg/L, 40 mg/L, and 60 mg/L. Sperm was diluted in a glucose-base extender at a ratio of 1:60 (sperm: glucose base), then 10 % DMSO and 5 % egg yolk was added before cryopreservation for two weeks. The results showed that the type and concentration of antioxidants had a significant effect on the motility and viability of cryopreserved climbing perch sperm (P 
    Matched MeSH terms: Antioxidants/pharmacology; Ascorbic Acid/pharmacology; Glucose/pharmacology; Glutathione/pharmacology; Inositol/pharmacology; beta Carotene/pharmacology; alpha-Tocopherol/pharmacology
  2. Hussein HR, Chang CY, Zheng Y, Yang CY, Li LH, Lee YT, et al.
    Nanotechnology, 2024 Feb 09;35(17).
    PMID: 38262054 DOI: 10.1088/1361-6528/ad21a2
    Heparins are a family of sulfated linear negatively charged polysaccharides that have been widely used for their anticoagulant, antithrombotic, antitumor, anti-inflammatory, and antiviral properties. Additionally, it has been used for acute cerebral infarction relief as well as other pharmacological actions. However, heparin's self-aggregated macrocomplex may reduce blood circulation time and induce life-threatening thrombocytopenia (HIT) complicating the use of heparins. Nonetheless, the conjugation of heparin to immuno-stealth biomolecules may overcome these obstacles. An immunostealth recombinant viral capsid protein (VP28) was expressed and conjugated with heparin to form a novel nanoparticle (VP28-heparin). VP28-heparin was characterized and tested to determine its immunogenicity, anticoagulation properties, effects on total platelet count, and risk of inducing HIT in animal models. The synthesized VP28-heparin trimeric nanoparticle was non-immunogenic, possessed an average hydrodynamic size (8.81 ± 0.58 nm) optimal for the evasion renal filtration and reticuloendothelial system uptake (hence prolonging circulating half-life). Additionally, VP28-heparin did not induce mouse death or reduce blood platelet count when administered at a high dosein vivo(hence reducing HIT risks). The VP28-heparin nanoparticle also exhibited superior anticoagulation properties (2.2× higher prothrombin time) and comparable activated partial thromboplastin time, but longer anticoagulation period when compared to unfractionated heparin. The anticoagulative effects of the VP28-heparin can also be reversed using protamine sulfate. Thus, VP28-heparin may be an effective and safe heparin derivative for therapeutic use.
    Matched MeSH terms: Anticoagulants/pharmacology
  3. Taheri A, Khandaker MU, Moradi F, Bradley DA
    Phys Med Biol, 2024 Feb 15;69(4).
    PMID: 38286017 DOI: 10.1088/1361-6560/ad2380
    Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.
    Matched MeSH terms: Gold/pharmacology
  4. Kaka U, Hui Cheng C, Meng GY, Fakurazi S, Kaka A, Behan AA, et al.
    Biomed Res Int, 2015;2015:305367.
    PMID: 25695060 DOI: 10.1155/2015/305367
    Effects of ketamine and lidocaine on electroencephalographic (EEG) changes were evaluated in minimally anaesthetized dogs, subjected to electric stimulus. Six dogs were subjected to six treatments in a crossover design with a washout period of one week. Dogs were subjected to intravenous boluses of lidocaine 2 mg/kg, ketamine 3 mg/kg, meloxicam 0.2 mg/kg, morphine 0.2 mg/kg and loading doses of lidocaine 2 mg/kg followed by continuous rate infusion (CRI) of 50 and 100 mcg/kg/min, and ketamine 3 mg/kg followed by CRI of 10 and 50 mcg/kg/min. Electroencephalogram was recorded during electrical stimulation prior to any drug treatment (before treatment) and during electrical stimulation following treatment with the drugs (after treatment) under anaesthesia. Anaesthesia was induced with propofol and maintained with halothane at a stable concentration between 0.85 and 0.95%. Pretreatment median frequency was evidently increased (P < 0.05) for all treatment groups. Lidocaine, ketamine, and morphine depressed the median frequency resulting from the posttreatment stimulation. The depression of median frequency suggested evident antinociceptive effects of these treatments in dogs. It is therefore concluded that lidocaine and ketamine can be used in the analgesic protocol for the postoperative pain management in dogs.
    Matched MeSH terms: Analgesics/pharmacology*; Ketamine/pharmacology*; Lidocaine/pharmacology*; Morphine/pharmacology*; Thiazines/pharmacology*; Thiazoles/pharmacology*; Propofol/pharmacology
  5. Khir NAM, Noh ASM, Long I, Zakaria R, Ismail CAN
    Mol Cell Biochem, 2024 Mar;479(3):539-552.
    PMID: 37106243 DOI: 10.1007/s11010-023-04749-5
    The role of carbon monoxide (CO) has evolved albeit controversial disputes on its toxicity. This biological gasotransmitter participates in the endogenous regulation of neurotransmitters and neuropeptides released in the nervous system. Exogenous CO gas inhalation at a lower concentration has been the subject of investigations, which have revealed its biological homeostatic mechanisms and protective effects against many pathological conditions. This therapeutic procedure of CO is, however, limited due to its immediate release, which favours haemoglobin at a high affinity with the subsequent generation of toxic carboxyhaemoglobin in tissues. In order to address this problem, carbon monoxide releasing molecule-2 (CORM-2) or also known as tricarbonyldichlororuthenium II dimer is developed to liberate a controlled amount of CO in the biological systems. In this review, we examine several potential mechanisms exerted by this therapeutic compound to produce the anti-nociceptive effect that has been demonstrated in previous studies. This review could shed light on the role of CORM-2 to reduce pain, especially in cases of chronic and neuropathic pain.
    Matched MeSH terms: Carbon Monoxide/pharmacology
  6. Primus PS, Wu CH, Kao CL, Choo YM
    Nat Prod Res, 2024 Apr;38(8):1406-1413.
    PMID: 36416441 DOI: 10.1080/14786419.2022.2147932
    Two new bisanthraquinones, glabraquinone A and B (1-2) were isolated from the root of Prismatomeris glabra (Korth.) Valeton. In addition to the new glabraquinones, six known anthraquinones, that is, 1-hydroxy-2-methoxy-6-methylanthraquinone (3), 1,2-dimethoxy-7-methylanthraquinone (4), lucidin (5), nordamnacanthal (6), damnacanthal (7) and 2-carboxaldehyde-3-hydroxyanthraquinone (8)) and an aromatic compound, that is, catechol diethyl ether (9) were isolated and characterized in this study. Compounds 1, 4 and 9 showed mild activity, reducing N2A cell viability to 77%, 82% and 77%, respectively, in anti-neuroblastoma assay.
    Matched MeSH terms: Anthraquinones/pharmacology
  7. Nicdao MA, Ingalla PC, Ingalla J
    Trop Biomed, 2023 Mar 01;40(1):14-22.
    PMID: 37355999 DOI: 10.47665/tb.40.1.006
    Antimicrobial resistance (AMR) is a global health crisis. Despite the drug discovery efforts, AMR is increasing, and discoveries are nearly nil. It is thus critical to design new strategies. Probiotics are tapped as alternatives to antibiotics for the treatment of gut-associated diseases. Lactobacillus species, common in food products, can inhibit the growth of gut pathogens. Here, we demonstrate the antimicrobial activities of Lactobacillus species - Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus are enhanced when cocultured with Salmonella enterica subsp. enterica serovar Typhimurium. Cell-free culture supernatants (CFCS) from cocultures of Lactobacillus spp. and Salmonella enterica serovar Typhimurium more potently inhibit pathogen growth than their monoculture counterparts. Interestingly, we discovered that Salmonella enterica serovar Typhimurium could enhance the production of antimicrobials from Lactobacillus spp., most evident in L. delbrueckii subsp. bulgaricus. Also, L. delbrueckii subsp. bulgaricus CFCS upregulates key Salmonella virulence genes, hilA and sipA. Whether this increases Salmonella's pathogenicity in vivo or reduces pathogen fitness and growth inhibition in vitro warrants further investigation. We propose that these probiotic isolates may be utilized for innovative natural food processing and preservation strategies to control Salmonella food contaminations. Importantly, our findings that Salmonella elicits an enhanced antimicrobial activity from Lactobacillus spp. provide evidence of a pathogen-mediated elicitation of antimicrobial production. Therefore, extending this phenomenon to other microbial interactions may help augment the strategies for drug discovery.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Amir Yusri MA, Sekar M, Wong LS, Gan SH, Ravi S, Subramaniyan V, et al.
    Drug Des Devel Ther, 2023;17:1079-1096.
    PMID: 37064431 DOI: 10.2147/DDDT.S389977
    Celastrol is a naturally occurring chemical isolated from Tripterygium wilfordii Hook. f., root extracts widely known for their neuroprotective properties. In this review, we focus on the efficacy of celastrol in mitigating memory impairment (MI) in both in vivo and in vitro models. Scopus, PubMed and Web of Science databases were utilised to locate pertinent literatures that explore the effects of celastrol in the brain, including its pharmacokinetics, bioavailability, behavioral effects and some of the putative mechanisms of action on memory in many MI models. To date, preclinical studies strongly suggest that celastrol is highly effective in enhancing the cognitive performance of MI animal models, particularly in the memory domain, including spatial, recognition, retention and reference memories, via reduction in oxidative stress and attenuation of neuro-inflammation, among others. This review also emphasised the challenges and potential associated enhancement of medication delivery for MI treatment. Additionally, the potential structural alterations and derivatives of celastrol in enhancing its physicochemical and drug-likeness qualities are examined. The current review demonstrated that celastrol can improve cognitive performance and mitigate MI in several preclinical investigations, highlighting its potential as a natural lead molecule for the design and development of a novel neuroprotective medication.
    Matched MeSH terms: Pentacyclic Triterpenes/pharmacology
  9. Ge Q, Wang K, Shao X, Wei Y, Zhang X, Liu Y, et al.
    Foodborne Pathog Dis, 2023 May;20(5):197-208.
    PMID: 37172299 DOI: 10.1089/fpd.2022.0083
    Rhizopus nigricans is a widespread phytopathogen in fruits and vegetables that can cause considerable economic effects and resource waste. Flavonoids from Sedum aizoon L. (FSAL) have specific antifungal activities. This study selected FSAL as an antifungal to prolong the preservation of fruits and vegetables. The results showed that the mycelial morphology and ultrastructure were damaged by the FSAL treatment (1.0 minimum inhibitory concentration), led to the increase of reactive oxygen species and malondialdehyde, and affected the activity of key enzymes in the glycolytic pathway, such as lactic dehydrogenase, pyruvate kinase, and hexokinase of R. nigricans. Key genes in glycolysis were upregulated or downregulated. In addition, in the treatment and control groups, 221 differentially expressed genes were found, including 89 that were upregulated and 32 that were downregulated, according to the transcriptome results. The differential genes were mainly enriched in glycolysis, pyruvate metabolism, and citrate cycle pathways. The results revealed some insights into the antifungal mechanism of FSAL against R. nigricans and offered a theoretical foundation for its advancement as a novel plant-derived antifungal agent.
    Matched MeSH terms: Antifungal Agents/pharmacology
  10. Chua HM, Moshawih S, Goh HP, Ming LC, Kifli N
    PLoS One, 2023;18(9):e0290948.
    PMID: 37656730 DOI: 10.1371/journal.pone.0290948
    There is still unmet medical need in cancer treatment mainly due to drug resistance and adverse drug events. Therefore, the search for better drugs is essential. Computer-aided drug design (CADD) and discovery tools are useful to streamline the lengthy and costly drug development process. Anthraquinones are a group of naturally occurring compounds with unique scaffold that exert various biological properties including anticancer activities. This protocol describes a systematic review that provide insights into the computer-aided drug design and discovery based on anthraquinone scaffold for cancer treatment. It was prepared in accordance with the "Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 guidelines, and published in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904). Search strategies will be developed based on the combination of relevant keywords and executed in PubMed, Scopus, Web of Science and MedRxiv. Only original studies that employed CADD as primary tool in virtual screening for the purpose of designing or discovering anti-cancer drugs involving anthraquinone scaffold published in English language will be included. Two independent reviewers will be involved to screen and select the papers, extract the data and assess the risk of bias. Apart from exploring the trends and types of CADD methods used, the target proteins of these compounds in cancer treatment will also be revealed in this review. It is believed that the outcome of this study could be utilized to support the ongoing research in similar area with better quality and greater probability of success, consequently optimizing the resources in subsequent in vitro, in vivo, non-clinical and clinical development. It will also serve as an evidence based scientific guide for new research to design novel anthraquinone-derived drug with improved efficacy and safety profile for cancer treatment.
    Matched MeSH terms: Anthraquinones/pharmacology
  11. Gan PT, Lim YY, Ting ASY
    Arch Microbiol, 2023 Aug 11;205(9):304.
    PMID: 37566125 DOI: 10.1007/s00203-023-03649-y
    The influence of light exposure on antioxidant and antimicrobial activities of nine fungal isolates [Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), Xylaria venustula (PH22), Fusarium proliferatum (CCH), Colletotrichum boninese (PL9), Colletotrichum boninese (PL1), Colletotrichum boninese (OL2), Colletotrichum gloeosporioides (OL3) and Colletotrichum siamense (PL3)] were determined. The isolates were incubated in blue, red, green, yellow and white fluorescent light (12 h photoperiod of alternating light/dark). It was observed that green light induced higher total phenolic content (TPC) (2.96 ± 0.16 mg-30.71 ± 1.03 mg GAE/g) and ferric reducing antioxidant power (FRAP) in most isolates (4.82 ± 0.04-53.55 ± 4.33 mg GAE/g), whereas red light induced higher total flavonoid content (TFC) levels (1.14 ± 0.08-18.40 ± 1.12 mg QE/g). The crude extracts from most fungal cultures exposed to green and red lights were also notably more potent against the tested pathogens, as larger zones of inhibition (ZOI) (9.00 ± 1.00-38.30 ± 2.90 mm) and lower minimum inhibitory concentration (MIC) (0.0196-1.25 mg/mL) were achieved for antimicrobial effect. This study showed that light treatments are effective strategies in enhancing production of more potent antimicrobial compounds and valuable antioxidants from fungal isolates.
    Matched MeSH terms: Plant Extracts/pharmacology
  12. Chua RW, Song KP, Ting ASY
    Antonie Van Leeuwenhoek, 2023 Oct;116(10):1057-1072.
    PMID: 37597137 DOI: 10.1007/s10482-023-01870-9
    A rare fungal endophyte, identified as Buergenerula spartinae (C28), was isolated from the roots of Cymbidium orchids and was characterised and evaluated for its antimicrobial activities. Bio-guided fractionation revealed 4 fractions from B. spartinae (C28) having antibacterial activities against at least one bacterial pathogen tested (Bacillus cereus and Staphylococcus aureus). However, inhibitory activities were absent against pathogenic fungi (Ganoderma boninense, Pythium ultimum and Fusarium solani). Fraction 2 and fraction 4 of B. spartinae (C28) exhibited potent antibacterial activities against S. aureus (MIC: 0.078 mg/mL) and B. cereus (MIC: 0.313 mg/mL), respectively. LCMS analysis revealed the presence of antibacterial agents and antibiotics in fraction 2 (benoxinate, pyropheophorbide A, (-)-ormosanine and N-undecylbenzenesulfonic acid) and fraction 4 (kaempferol 3-p-coumarate, 6-methoxy naphthalene acetic acid, levofuraltadone, hinokitiol glucoside, 3-α(S)-strictosidine, pyropheophorbide A, 5'-hydroxystreptomycin, kanzonol N and 3-butylidene-7-hydroxyphthalide), which may be responsible for the antibacterial activities observed. Most of the bioactive compounds profiled from the antibacterial fractions were discovered for the first time from endophytic isolates (i.e. from B. spartinae (C28)). Buergenerula spartinae (C28) from Cymbidium sp. is therefore, an untapped resource of bioactive compounds for potential applications in healthcare and commercial industries.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Emmclan LSH, Zakaria MH, Ramaiya SD, Natrah I, Bujang JS
    PeerJ, 2022;10:e12821.
    PMID: 35111414 DOI: 10.7717/peerj.12821
    BACKGROUND: Coastal land development has deteriorated the habitat and water quality for seagrass growth and causes the proliferation of opportunist macroalgae that can potentially affect them physically and biochemically. The present study investigates the morphological and biochemical responses of seagrass from the Hydrocharitaceae family under the macroalgal bloom of Ulva reticulata, induced by land reclamation activities for constructing artificial islands.

    METHODS: Five seagrass species, Enhalus acoroides, Thalassia hemprichii, Halophila ovalis, Halophila major, and Halophila spinulosa were collected at an Ulva reticulata-colonized site (MA) shoal and a non-Ulva reticulata-colonized site (MC) shoal at Sungai Pulai estuary, Johor, Malaysia. Morphometry of shoots comprising leaf length (LL), leaf width (LW), leaf sheath length (LSL), leaflet length (LTL), leaflet width (LTW), petiole length (PL), space between intra-marginal veins (IV) of leaf, cross vein angle (CVA) of leaf, number of the cross vein (NOC), number of the leaf (NOL) and number of the leaflet (NOLT) were measured on fresh seagrass specimens. Moreover, in-situ water quality and water nutrient content were also recorded. Seagrass extracts in methanol were assessed for total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid radical cation scavenging activity (ABTS), and ferric reducing antioxidant power (FRAP).

    RESULTS: Seagrasses in the U. reticulata-colonized site (MA) had significantly higher (t-test, p < 0.05) leaf dimensions compared to those at the non-U. reticulata colonized site (MC). Simple broad-leaved seagrass of H. major and H. ovalis were highly sensitive to the colonization of U. reticulata, which resulted in higher morphometric variation (t-test, p < 0.05) including LL, PL, LW, and IV. Concerning the biochemical properties, all the seagrasses at MA recorded significantly higher (t-test, p < 0.05) TPC, TFC, and ABTS and lower DPPH and FRAP activities compared to those at MC. Hydrocharitaceae seagrass experience positive changes in leaf morphology features and metabolite contents when shaded by U. reticulata. Researching the synergistic effect of anthropogenic nutrient loads on the interaction between seagrasses and macroalgae can provide valuable information to decrease the negative effect of macroalgae blooms on seagrasses in the tropical meadow.

    Matched MeSH terms: Antioxidants/pharmacology
  14. Apparoo Y, Wei Phan C, Rani Kuppusamy U, Chan EWC
    Brain Res, 2024 Feb 01;1824:148693.
    PMID: 38036238 DOI: 10.1016/j.brainres.2023.148693
    Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through β-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.
    Matched MeSH terms: Antioxidants/pharmacology
  15. Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, et al.
    J Agric Food Chem, 2024 Jan 10;72(1):80-93.
    PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217
    Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Koou SY, Chong CS, Vythilingam I, Lee CY, Ng LC
    Parasit Vectors, 2014;7:471.
    PMID: 25301032 DOI: 10.1186/s13071-014-0471-0
    In Singapore, dose-response bioassays of Aedes aegypti (L.) adults have been conducted, but the mechanisms underlying resistance to insecticides remain unclear. In this study, we evaluated insecticide resistance and its underlying mechanism in field populations of Ae. aegypti adults.
    Matched MeSH terms: Insecticides/pharmacology*; Organothiophosphorus Compounds/pharmacology*; Organophosphates/pharmacology; Pyrethrins/pharmacology*
  17. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K
    Biomed Res Int, 2014;2014:186864.
    PMID: 24877064 DOI: 10.1155/2014/186864
    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Antifungal Agents/pharmacology*; Antiviral Agents/pharmacology*; Curcumin/pharmacology*
  18. Ang HH, Chan KL, Mak JW
    Folia Parasitol., 1998;45(3):196-8.
    PMID: 9805783
    Five Malaysian isolates of the protozoan Plasmodium falciparum Welch were cultured in vitro following the method of Trager and Jensen (1976, 1977) and subsequently cloned using the limiting dilution method of Rosario (1981). Thirty clones were obtained and were later characterized against schizontocidal drugs, chloroquine, mefloquine and quinine, using the modified in vitro microtechnique. Results showed that these local isolates were heterogeneous and most of the clones exhibited similar pattern of susceptibility as their parent isolate except for ST 168 clone and two ST 195 clones that were sensitive but two ST 165 clones, two ST 168 clones and five ST 195 clones were resistant against quinine, respectively. Results also indicated that they were pure clones compared to their parent isolate because their drug susceptibility studies were significantly different (p < 0.05).
    Matched MeSH terms: Antimalarials/pharmacology*; Chloroquine/pharmacology; Quinine/pharmacology; Mefloquine/pharmacology
  19. Ruszymah BH, Nabishah BM, Aminuddin S, Khalid BA
    Clin Exp Pharmacol Physiol, 1995 Jan;22(1):35-9.
    PMID: 7768032
    1. The aim of this study was to investigate the effect of repeated exposure to stress on tail blood pressure (TBP) of normal as well as GCA (glycyrrhizic acid) and steroid treated rats. Male Sprague-Dawley rats (250 g) were exposed to ether vapour to achieve light anaesthesia prior to TBP recording. Rats were injected with either normal saline or naloxone prior to exposure to stress. Tail blood pressure was recorded daily for 2 weeks. 2. We found that ether stress caused a transient drop in TBP in control as well as in dexamethasone (DEX) treated rats. The stress-induced fall in blood pressure was reduced by naloxone in control rats but not in DEX treated rats. However the transient drop in TBP following stress was not seen in either GCA or deoxycorticosterone (DOC) treated rats. 3. We conclude that first, the reduction in TBP was due to the release of endogenous opioids caused by stress. Second, DOC may block the release of such endogenous opioids, preventing the drop in TBP in response to stress, while DEX did not. Third, GCA caused a similar mineralocorticoid effect on reversing stress induced hypotension.
    Matched MeSH terms: Desoxycorticosterone/pharmacology*; Dexamethasone/pharmacology*; Glycyrrhetinic Acid/pharmacology*; Naloxone/pharmacology
  20. El-Seedi HR, Khalifa SAM, Taher EA, Farag MA, Saeed A, Gamal M, et al.
    Pharmacol Res, 2019 03;141:123-175.
    PMID: 30579976 DOI: 10.1016/j.phrs.2018.12.015
    Cardiac glycosides (CGs) are a class of naturally occurring steroid-like compounds, and members of this class have been in clinical use for more than 1500 years. They have been used in folk medicine as arrow poisons, abortifacients, heart tonics, emetics, and diuretics as well as in other applications. The major use of CGs today is based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme, and they are regarded as an effective treatment for congestive heart failure (CHF), cardiac arrhythmia and atrial fibrillation. Furthermore, increasing evidence has indicated the potential cytotoxic effects of CGs against various types of cancer. In this review, we highlight some of the structural features of this class of natural products that are crucial for their efficacy, some methods of isolating these compounds from natural resources, and the structural elucidation tools that have been used. We also describe their physicochemical properties and several modern biotechnological approaches for preparing CGs that do not require plant sources.
    Matched MeSH terms: Antineoplastic Agents/pharmacology; Cardenolides/pharmacology*; Cardiovascular Agents/pharmacology; Diuretics/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links