METHODS: A retrospective analytical cross-sectional study was conducted over 2 years. The cumulative antibiograms were constructed in accordance with current guidelines.
RESULTS: A total of 976 first isolate cultures were obtained from ICUs of the different referral hospitals. K. pneumoniae (8.8%, 8.1%) was a predominant pathogen in Windhoek Central hospital ICU in 2017 and 2018. In Oshakati intermediate hospital ICU, Enterobacter sp. (22.2%) and P. aeruginosa (37.5%) were the common pathogens in 2017 and 2018, respectively. A. baumannii isolates were >90% susceptibility to colistin, carbapenems, and tigecycline in 2017. In 2017, K. pneumoniae isolates were more susceptible to carbapenems (94% and 93.8% among isolates), amikacin (89.3%), and tigecycline (88.7%). In 2018, K. pneumoniae isolates were 100% susceptible amikacin, colistin, and carbapenems. S. maltophilia isolates were more than 80% susceptible to all the tested antibiotics. S. aureus isolates were 100% susceptible to linezolid, rifampicin, teicoplanin, and vancomycin in 2017 and in 2018. Its susceptibility to these antibiotics did not change.
CONCLUSION: The susceptibility patterns of the common isolated gram-negative pathogens were highly variable. Meropenem in combination with gentamicin is now the recommended antibiotic combination for empiric therapy for patients with LRTIs in Windhoek Central Hospital ICU.
Methods: We searched PubMed, Embase and the Cochrane register of trials systematically for studies that examined treatment options for patients with MDR- and XDR-AB infections until April 2016. Network meta-analysis (NMA) was performed to estimate the risk ratio (RR) and 95% CI from both direct and indirect evidence. Primary outcomes were clinical cure and microbiological cure. Secondary outcomes were all-cause mortality and nephrotoxic and non-nephrotoxic adverse events.
Results: A total of 29 studies with 2529 patients (median age 60 years; 65% male; median APACHE II score 19.0) were included. Although there were no statistically significant differences between treatment options, triple therapy with colistin, sulbactam and tigecycline had the highest clinical cure rate. Colistin in combination with sulbactam was associated with a significantly higher microbiological cure rate compared with colistin in combination with tigecycline (RR 1.23; 95% CI 1.03-1.47) and colistin monotherapy (RR 1.21; 95% CI 1.06-1.38). No significant differences in all-cause mortality were noted between treatment options. Tigecycline-based therapy also appeared less effective for achieving a microbiological cure and is not appropriate for treating bloodstream MDR- and XDR-AB infections.
Conclusions: Combination therapy of colistin with sulbactam demonstrates superiority in terms of microbiological cure with a safety profile similar to that of colistin monotherapy. Thus, our findings support the use of this combination as a treatment for MDR- and XDR-AB infections.
METHODS: The bacterial strains studied were examined with Etest strips to determine their minimum inhibitory concentrations (MICs) toward amikacin, ciprofloxacin, clarithromycin, imipenem, and linezolid.
RESULTS: Among 51 M. abscessus isolates examined by the Etest, the overall MICs of ciprofloxacin, imipenem, amikacin, clarithromycin, and linezolid showed resistance rates of 33.3%, 31.4%, 2.0%, 5.9%, and 21.6%, to the five antibiotics, respectively. M. abscessus subspecies abscessus was more resistant than M. abscessus subsp. massilience to ciprofloxacin, imipenem, and linezolid but was more susceptible to clarithromycin and amikacin. M. fortuitum isolates were significantly less resistant than M. abscessus to ciprofloxacin (3.6%) and imipenem (7.1%) but more resistant to clarithromycin (42.9%) and linezolid (39.3%).
CONCLUSION: A suitable combination therapy for Malaysian patients would be amikacin plus clarithromycin and ciprofloxacin, to cover infections by all three M. abscessus subspecies and M. fortuitum.
RESULTS: A new dimethyl aminopyridine based stabilizing agent named as DMAP-PTA was synthesized and used for stabilization of gold nanoparticles. Gold nanoparticles coated with DMAP-PTA abbreviated as DMAP-PTA-AuNPs were thoroughly characterized by UV-visible, FT-IR spectroscopic methods and transmission electron microscope before biological assay. DMAP-PTA, DMAP-PTA-AuNPs and Pefloxacin were examined for their antibacterial potential against E. coli, and the minimum inhibitory concentration (MIC) was determined to be 300, 200 and 50 µg/mL respectively. Gold nanoparticles conjugation was found to significantly enhance the antibacterial activity of DMAP-PTA as compared to pure compound. Moreover, effects of DMAP-PTA-AuNPs on the antibacterial potential of Pefloxacin was also evaluated by combination therapy of 1:1 mixture of DMAP-PTA-AuNPs and Pefloxacin against E. coli in a wide range of concentrations from 5 to 300 µg/mL. The MIC of Pefloxacin + DMAP-PTA-AuNPs mixture was found to be 25 µg/mL as compared to Pefloxacin alone (50 µg/mL), which clearly indicates that DMAP-PTA-AuNPs increased the potency of Pefloxacin. AFM analysis was also carried out to show morphological changes occur in bacteria before and after treatment of test samples. Furthermore, DMAP-PTA-AuNPs showed high selectivity towards Pefloxacin in spectrophotometric drug recognition studies which offers tremendous potential for analytical applications.
CONCLUSIONS: Gold nanoparticles conjugation was shown to enhance the antibacterial efficacy of DMAP-PTA ligand, while DMAP-PTA-AuNPs also induced synergistic effects on the potency of Pefloxacin against E. coli. DMAP-PTA-AuNPs were also developed as Pefloxacin probes in recognizing the drug in blood and water samples in the presence of other drugs.
AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.
METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.
RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.
CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.
METHODS: A total of 28 critically ill patients were included in this study. All data were collected from medical, microbiology and pharmacokinetic records. The clinical response was evaluated on the basis of clinical and microbiological parameters. The 24-h area under the curve (AUC0-24) was estimated from a single trough level using established equations.
RESULTS: Out of the 28 patients, 46% were classified as responders to vancomycin treatment. The trough vancomycin concentration did not differ between the responders and non-responders (15.02 ± 6.16 and 14.83 ± 4.80 μg mL-1; P = 0.929). High vancomycin minimum inhibitory concentration (MIC) was observed among the non-responders (P = 0.007). The ratio between vancomycin trough concentration and vancomycin MIC was significantly lower in the non-responder group (8.76 ± 3.43 vs. 12.29 ± 4.85 μg mL-1; P = 0.034). The mean ratio of estimated AUC0-24 and vancomycin MIC was 313.78 ± 117.17 μg h mL-1 in the non-responder group and 464.44 ± 139.06 μg h mL-1 in the responder group (P = 0.004). AUC0-24/MIC of ≥ 400 μg h mL-1 was documented for 77% of the responders and 27% of the non-responders (c2 = 7.03; P = 0.008).
CONCLUSIONS: Ratio of trough concentration/MIC and AUC0-24/MIC of vancomycin are better predictors for MRSA treatment outcomes than trough vancomycin concentration or AUC0-24 alone. The single trough-based estimated AUC may be sufficient for the monitoring of treatment response with vancomycin.