METHODS AND RESULTS: A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups.
CONCLUSIONS: B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species.
METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.
RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.
CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.
METHODS: Hepatotoxicity was induced in adult female Wistar rats using carbon tetrachloride (CCl4 ). Thirty-six rats were randomly divided into six groups with six rats in each group: Group 1 (normal control group), Group 2 (received only CCl 4 ), Group 3 (CCl 4 +low dose BM-MSCs), Group 4 (CCl 4 +high dose BM-MSCs), Group 5 (CCl 4 + silymarin), Group 6 (CCl 4 +silymarin+high dose BM-MSCs). Thirty days after the treatment, blood samples were collected for hepatocyte growth factor estimation. The rats were then killed, bone marrow was extracted for chromosomal aberration assay. Liver tissue was processed for evaluating the DNA fragmentation assay, histopathology, and scanning electron microscopy study.
RESULTS: Combination treatment of silymarin and high dose BM-MSCs significantly (P
OBJECTIVES: The anti-inflammatory and anti-catabolic actions of Diclofenac were compared with apigenin-C-glycosides rich Clinacanthus nutans (CN) leaf extract in osteoporotic-osteoarthritis rats.
METHODS: Female Sprague Dawley rats were randomized into five groups (n = 6). Four groups were bilateral ovariectomised for osteoporosis development, and osteoarthritis were induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee joints. The Sham group was sham-operated, received saline injection and deionized drinking water. The treatment groups were orally given 200 or 400 mg extract/kg body weight or 5 mg diclofenac /kg body weight daily for 28 days. Articular cartilage and bone changes were monitored by gross and histological structures, micro-CT analysis, serum protein biomarkers, and mRNA expressions for inflammation and catabolic protease genes.
RESULTS: HPLC analysis confirmed that apigenin-C-glycosides (shaftoside, vitexin, and isovitexin) were the major compounds in the extract. The extract significantly and dose-dependently reduced cartilage erosion, bone loss, cartilage catabolic changes, serum osteoporotic-osteoarthritis biomarkers (procollagen-type-II-N-terminal-propeptide PIINP; procollagen-type-I-N-terminal-propeptide PINP; osteocalcin), inflammation (IL-1β) and mRNA expressions for nuclear-factor-kappa-beta NF-κβ, interleukin-1-beta IL-1β, cyclooxygenase-2; and matrix-metalloproteinase-13 MMP13 activities, in osteoporotic-osteoarthritis rats comparable to Diclofenac.
CONCLUSION: This study demonstrates that apigenin-C-glycosides at 400 mg CN extract/kg (about 0.2 mg apigenin-equivalent/kg) is comparable to diclofenac in suppressing inflammation and catabolic proteases for osteoporotic-osteoarthritis prevention. Graphical abstract.
METHODS: PCOS was induced in rats except for normal control by administering LTZ at 1 mg/kg/day for 21 days. Methanolic extract of F. deltoidea leaf was then orally administered to the PCOS rats at the dose of 250, 500, or 1000 mg/kg/day, respectively for 15 consecutive days. Lipid profile was measured enzymatically in serum. The circulating concentrations of reproductive hormone and antioxidant enzymes were determined by ELISA assays. Ovarian and uterus histomorphometric changes were further observed by hematoxylin and eosin (H&E) staining.
RESULTS: The results showed that treatment with F. deltoidea at the dose of 500 and 1000 mg/kg/day reduced insulin resistance, obesity indices, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL), malondialdehyde (MDA), testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) to near-normal levels in PCOS rats. The levels of high-density lipoprotein cholesterol (HDL), estrogen, and superoxide dismutase (SOD) are also similar to those observed in normal control rats. Histomorphometric measurements confirmed that F. deltoidea increased the corpus luteum number and the endometrial thickness.
CONCLUSIONS: F. deltoidea can reverse PCOS symptoms in female rats by improving insulin sensitivity, antioxidant activities, hormonal imbalance, and histological changes. These findings suggest the potential use of F. deltoidea as an adjuvant agent in the treatment program of PCOS.
AIM OF THE STUDY: The study is aimed at identifying the key ingredients of papaya leaf extract and elucidate the mechanism (s) of action of the identified potent component in mitigating thrombocytopenia (Thp).
MATERIALS AND METHODS: C. papaya leaf juice was subjected for sequential fractionation to identify the anti-thrombocytopenic phytochemicals. In vivo, stable thrombocytopenia was induced by subcutaneous injection of 70 mg/kg cyclophosphamide (Cyp). After induction, rats were treated with 200 and 400 mg/kg body weight papaya leaf juice and with identified fractions for 14 days. Serum thrombopoietin level was estimated using ELISA. CD110/cMpl, a receptor for thrombopoietin on platelets was measured by western blotting.
RESULTS: Administration of cyclophosphamide for 6 days induced thrombocytopenia (210.4 ± 14.2 × 103 cells/μL) in rats. Treating thrombocytopenic rats with papaya leaf juice and butanol fraction for 14 days significantly increased the platelet count to 1073.50 ± 29.6 and 1189.80 ± 36.5 × 103 cells/μL, respectively. C.papaya extracts normalized the elevated bleeding and clotting time and decreased oxidative markers by increasing endogenous antioxidants. A marginal increase in the serum thrombopoietin (TPO) level was observed in Cyp treated group compared to normal and treatment groups. Low expression of CD110/cMpl receptor found in Cyp treated group was enhanced by C. papaya extracts (CPJ) and CPJ-BT. Furthermore, examination of the morphology of bone marrow megakaryocytes, histopathology of liver and kidneys revealed the ability of CPJ and fractions in mitigating Cyp-induced thrombocytopenia in rats.
CONCLUSION: C. papaya leaf juice enhances the platelet count in chemotherapy-induced thrombocytopenia by increasing the expression of CD110 receptor on the megakaryocytes. Hence, activating CD110 receptor might be a viable strategy to increase the platelet production in individuals suffering from thrombocytopenia.
METHODS AND RESULTS: Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1.
CONCLUSIONS: These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection.
AIM OF THE STUDY: To investigate the antineuropathic and antinociceptive activities of Trifolium resupinatum leaves essential oil (TREO) in male Wistar rats, as well as to explore the potential mechanisms of action.
MATERIALS AND METHODS: The antinociceptive activity of TREO and its main constituents, quercetin (Qc) was assessed using the formalin-induced paw licking test. Moreover, the potential mechanisms of antinociception were evaluated through various competitive and non-competitive antagonisms. Additionally, the antineuropathic potential was investigated using the cervical spinal cord hemi-contusion (CCS) model, and the role of phosphorylated Stat-3 was analyzed using Western blotting.
RESULTS: TREO exerted significant antinociceptive activity (P
METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.
RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.
CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.
METHODS: In this study, a dystrophin-deficient myoblast cell line established from the skeletal muscle of a dystrophic (mdx) mouse was used as a model. The dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen conditions for 10 days to induce differentiation. The cells were subjected to total protein extraction prior to Western blotting assay technique. Protein sub-fractionation has been conducted to determine protein localization. The live-cell analysis of autophagy assay was done using a flow cytometer.
RESULTS: In our culture system, the dfd13 myoblasts did not achieve terminal differentiation. PTEN expression was profoundly increased in dfd13 myoblasts throughout the differentiation day subsequently indicates perturbation of PI3K/Akt/mTOR regulation. In addition, rictor-mTORC2 was also found inactivated in this event. This occurrence has caused FoxO3 misregulation leads to higher activation of autophagy-related genes in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, the ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features.
CONCLUSION: Perturbation of the PTEN-PI3K/Akt pathway triggers excessive autophagosome formation and subsequently reduced autophagic flux within dystrophin-deficient myoblasts where these findings are of importance to understand Duchenne Muscular Dystrophy (DMD) patients. We believe that some manipulation within its regulatory signaling reported in this study could help restore muscle homeostasis and attenuate disease progression. Video Abstract.