Displaying publications 801 - 820 of 8208 in total

Abstract:
Sort:
  1. Mohamed Yusoff AA, Mohd Khair SZN, Wan Abdullah WS, Abd Radzak SM, Abdullah JM
    J Cancer Res Ther, 2020 12 22;16(6):1517-1521.
    PMID: 33342822 DOI: 10.4103/jcrt.JCRT_1132_16
    Background and Objective: Meningiomas are among the most common intracranial tumors of the central nervous system. It is widely accepted that the initiation and progression of meningiomas involve the accumulation of nucleus genetic alterations, but little is known about the implication of mitochondrial genomic alterations during development of these tumors. The human mitochondrial DNA (mtDNA) contains a short hypervariable, noncoding displacement loop control region known as the D-Loop. Alterations in the mtDNA D-loop have been reported to occur in most types of human cancers. The purpose of this study was to assess the mtDNA D-loop mutations in Malaysian meningioma patients.

    Materials and Methods: Genomic DNA was extracted from 21 fresh-frozen tumor tissues and blood samples of the same meningioma patients. The entire mtDNA D-loop region (positions 16024-576) was polymerase chain reaction amplified using designed primers, and then amplification products were purified before the direct DNA sequencing proceeds.

    Results: Overall, 10 (47.6%) patients were detected to harbor a total of 27 somatic mtDNA D-loop mutations. Most of these mtDNA mutations were identified in the hypervariable segment II (40.7%), with 33.3% being located mainly in the conserved sequence block II of the D310 sequence. Furthermore, 58 different germline variations were observed at 21 nucleotide positions.

    Conclusion: Our results suggest that mtDNA alterations in the D-loop region may be an important and early event in developing meningioma. Further studies are needed, including validation in a larger patient cohort, to verify the clinicopathological outcomes of mtDNA mutation biomarkers in meningiomas.

    Matched MeSH terms: Base Sequence/genetics; DNA Replication/genetics; DNA, Mitochondrial/genetics*; Meningeal Neoplasms/genetics*; Meningioma/genetics*; Conserved Sequence/genetics
  2. See-Too WS, Salazar S, Ee R, Convey P, Chan KG, Peix Á
    Syst Appl Microbiol, 2017 Jun;40(4):191-198.
    PMID: 28501448 DOI: 10.1016/j.syapm.2017.03.002
    In this study we analysed three bacterial strains coded L10.10T, A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993T. Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4-30°C, and at pH 4.0-10. The DNA G+C content is 58.2-58.3mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10T, A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10T (LMG 29628T, DSM 101070T).
    Matched MeSH terms: Base Composition/genetics; DNA, Bacterial/genetics; DNA-Directed RNA Polymerases/genetics; RNA, Ribosomal, 16S/genetics; DNA Gyrase/genetics; Quorum Sensing/genetics*
  3. Conway DJ, Machado RL, Singh B, Dessert P, Mikes ZS, Povoa MM, et al.
    Mol Biochem Parasitol, 2001 Jul;115(2):145-56.
    PMID: 11420101
    Comparing patterns of genetic variation at multiple loci in the genome of a species can potentially identify loci which are under selection. The large number of polymorphic microsatellites in the malaria parasite Plasmodium falciparum are available markers to screen for selectively important loci. The Pfs48/45 gene on Chromosome 13 encodes an antigenic protein located on the surface of parasite gametes, which is a candidate for a transmission blocking vaccine. Here, genotypic data from 255 P. falciparum isolates are presented, which show that alleles and haplotypes of five single nucleotide polymorphisms (SNPs) in the Pfs48/45 gene are exceptionally skewed in frequency among different P. falciparum populations, compared with alleles at 11 microsatellite loci sampled widely from the parasite genome. Fixation indices measuring inter-population variance in allele frequencies (F(ST)) were in the order of four to seven times higher for Pfs48/45 than for the microsatellites, whether considered (i) among populations within Africa, or (ii) among different continents. Differing mutational processes at microsatellite and SNP loci could generally affect the population structure at these different types of loci, to an unknown extent which deserves further investigation. The highly contrasting population structure may also suggest divergent selection on the amino acid sequence of Pfs48/45 in different populations, which plausibly indicates a role for the protein in determining gamete recognition and compatibility.
    Matched MeSH terms: Genetics, Population; Membrane Glycoproteins/genetics*; Plasmodium falciparum/genetics*; Genetic Variation/genetics*; Protozoan Proteins/genetics*; Microsatellite Repeats/genetics*
  4. Teow SY, Mualif SA, Omar TC, Wei CY, Yusoff NM, Ali SA
    BMC Biotechnol, 2013;13:107.
    PMID: 24304876 DOI: 10.1186/1472-6750-13-107
    HIV genome is packaged and organized in a conical capsid, which is made up of ~1,500 copies of the viral capsid protein p24 (CA). Being a primary structural component and due to its critical roles in both late and early stages of the HIV replication cycle, CA has attracted increased interest as a drug discovery target in recent years. Drug discovery studies require large amounts of highly pure and biologically active protein. It is therefore desirable to establish a simple and reproducible process for efficient production of HIV-1 CA.
    Matched MeSH terms: Escherichia coli/genetics*; Plasmids/genetics; Recombinant Proteins/genetics; HIV-1/genetics*; HIV Core Protein p24/genetics; Capsid Proteins/genetics
  5. Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC
    J Immunol, 2014 Jun 15;192(12):5739-48.
    PMID: 24835394 DOI: 10.4049/jimmunol.1301376
    Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
    Matched MeSH terms: Hematopoiesis/genetics; Zebrafish/genetics; Zebrafish Proteins/genetics; STAT5 Transcription Factor/genetics; Suppressor of Cytokine Signaling Proteins/genetics; Janus Kinase 2/genetics
  6. Brucato N, Kusuma P, Cox MP, Pierron D, Purnomo GA, Adelaar A, et al.
    Mol Biol Evol, 2016 09;33(9):2396-400.
    PMID: 27381999 DOI: 10.1093/molbev/msw117
    Malagasy genetic diversity results from an exceptional protoglobalization process that took place over a thousand years ago across the Indian Ocean. Previous efforts to locate the Asian origin of Malagasy highlighted Borneo broadly as a potential source, but so far no firm source populations were identified. Here, we have generated genome-wide data from two Southeast Borneo populations, the Banjar and the Ngaju, together with published data from populations across the Indian Ocean region. We find strong support for an origin of the Asian ancestry of Malagasy among the Banjar. This group emerged from the long-standing presence of a Malay Empire trading post in Southeast Borneo, which favored admixture between the Malay and an autochthonous Borneo group, the Ma'anyan. Reconciling genetic, historical, and linguistic data, we show that the Banjar, in Malay-led voyages, were the most probable Asian source among the analyzed groups in the founding of the Malagasy gene pool.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Ethnic Groups/genetics*; Genetics, Population/methods; African Continental Ancestry Group/genetics*; Asian Continental Ancestry Group/genetics*
  7. Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM
    Sci Rep, 2020 09 30;10(1):16123.
    PMID: 32999341 DOI: 10.1038/s41598-020-72997-2
    Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
    Matched MeSH terms: Plants, Medicinal/genetics; Gene Expression Regulation, Plant/genetics; Plant Leaves/genetics; Impatiens/genetics*; Flowers/genetics; Transcriptome/genetics*
  8. Moradipoor S, Ismail P, Etemad A, Wan Sulaiman WA, Ahmadloo S
    Biomed Res Int, 2016;2016:1845638.
    PMID: 27781209 DOI: 10.1155/2016/1845638
    Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT(2) Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
    Matched MeSH terms: Cardiovascular Diseases/genetics; Diabetes Mellitus, Type 2/genetics*; Prediabetic State/genetics*; Down-Regulation/genetics; Up-Regulation/genetics; Transcriptome/genetics*
  9. Oong XY, Ng KT, Tan JL, Chan KG, Kamarulzaman A, Chan YF, et al.
    PLoS One, 2017;12(1):e0170610.
    PMID: 28129386 DOI: 10.1371/journal.pone.0170610
    Reassortment of genetic segments between and within influenza B lineages (Victoria and Yamagata) has been shown to generate novel reassortants with unique genetic characteristics. Based on hemagglutinin (HA) and neuraminidase (NA) genes, recent surveillance study has identified reassortment properties in B/Phuket/3073/2013-like virus, which is currently used in the WHO-recommended influenza vaccine. To understand the potential reassortment patterns for all gene segments, four B/Phuket/3073/2013-like viruses and two unique reassortants (one each from Yamagata and Victoria) detected in Malaysia from 2012-2014 were subjected to whole-genome sequencing. Each gene was phylogenetically classified into lineages, clades and sub-clades. Three B/Phuket/3073/2013-like viruses from Yamagata lineage were found to be intra-clade reassortants, possessing PA and NA genes derived from Stockholm/12-like sub-clade, while the remaining genes from Wisconsin/01-like sub-clade (both sub-clades were within Yamagata Clade 3/Yam-3). However, the other B/Phuket/3073/2013-like virus had NS gene that derived from Stockholm/12-like sub-clade instead of Wisconsin/01-like sub-clade. One inter-clade reassortant had Yamagata Clade 2/Yam-2-derived HA and NP, and its remaining genes were Yam-3-derived. Within Victoria Clade 1/Vic-1 in Victoria lineage, one virus had intra-clade reassortment properties: HA and PB2 from Vic-1B sub-clade, MP and NS from a unique sub-clade "Vic-1C", and the remaining genes from Vic-1A sub-clade. Although random reassortment event may generate unique reassortants, detailed phylogenetic classification of gene segments showed possible genetic linkage between PA and NA genes in B/Phuket/3073/2013-like viruses, which requires further investigation. Understanding on reassortment patterns in influenza B evolution may contribute to future vaccine design.
    Matched MeSH terms: Influenza, Human/genetics*; Influenza Vaccines/genetics; Neuraminidase/genetics*; Influenza B virus/genetics*; Reassortant Viruses/genetics; Hemagglutinin Glycoproteins, Influenza Virus/genetics*
  10. Parra-Medina R, Lopez-Correa P, Gutierrez V, Polo F
    Malays J Pathol, 2018 Aug;40(2):199-202.
    PMID: 30173239
    A 43-year-old man presented with two-month history of fatigue, weakness, paleness, rectal bleeding, sweating, and weight loss of 10 kg in the past one month. A complete blood count revealed anaemia. The patient underwent a right hemicolectomy. The microscopic examination revealed an adenosquamous carcinoma associated with a mucinous adenocarcinoma in a patient with microsatellite instability due to loss of MLH1 and PMS2 expression and retention of MSH2 and MSH6 expression in both the squamous and glandular components. We also observed an atypical immunohistochemical phenotype in the adenocarcinoma component showing CK7 expression and reduced CK20 and CDX2 expression.
    Matched MeSH terms: Adenocarcinoma, Mucinous/genetics; Colonic Neoplasms/genetics; Neoplasms, Multiple Primary/genetics; Carcinoma, Adenosquamous/genetics; MutL Protein Homolog 1/genetics; Mismatch Repair Endonuclease PMS2/genetics
  11. Lim JCW, Kwan YP, Tan MS, Teo MHY, Chiba S, Wahli W, et al.
    Int J Mol Sci, 2018 Sep 20;19(10).
    PMID: 30241392 DOI: 10.3390/ijms19102860
    BACKGROUND: Peroxisome proliferator⁻activated receptor (PPAR) β/δ, a ligand-activated transcription factor, is involved in diverse biological processes including cell proliferation, cell differentiation, inflammation and energy homeostasis. Besides its well-established roles in metabolic disorders, PPARβ/δ has been linked to carcinogenesis and was reported to inhibit melanoma cell proliferation, anchorage-dependent clonogenicity and ectopic xenograft tumorigenicity. However, PPARβ/δ's role in tumour progression and metastasis remains controversial.

    METHODS: In the present studies, the consequence of PPARβ/δ inhibition either by global genetic deletion or by a specific PPARβ/δ antagonist, 10h, on malignant transformation of melanoma cells and melanoma metastasis was examined using both in vitro and in vivo models.

    RESULTS: Our study showed that 10h promotes epithelial-mesenchymal transition (EMT), migration, adhesion, invasion and trans-endothelial migration of mouse melanoma B16/F10 cells. We further demonstrated an increased tumour cell extravasation in the lungs of wild-type mice subjected to 10h treatment and in Pparβ/δ-/- mice in an experimental mouse model of blood-borne pulmonary metastasis by tail vein injection. This observation was further supported by an increased tumour burden in the lungs of Pparβ/δ-/- mice as demonstrated in the same animal model.

    CONCLUSION: These results indicated a protective role of PPARβ/δ in melanoma progression and metastasis.

    Matched MeSH terms: Melanoma/genetics*; Neoplasm Invasiveness/genetics; Neoplasm Metastasis/genetics*; PPAR delta/genetics; PPAR-beta/genetics; Epithelial-Mesenchymal Transition/genetics
  12. Wen X, Huang J, Cao J, Xu J, Mi J, Wang Y, et al.
    Ecotoxicol Environ Saf, 2020 Mar 15;191:110214.
    PMID: 31968275 DOI: 10.1016/j.ecoenv.2020.110214
    Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P  0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment.
    Matched MeSH terms: Bacteria/genetics; Bacterial Proteins/genetics*; Escherichia coli/genetics; Plasmids/genetics; Recombinant Proteins/genetics; Tetracycline Resistance/genetics*
  13. Yeo BPH, Foong LC, Tam SM, Lee V, Hwang SS
    Biochem Mol Biol Educ, 2018 01;46(1):47-53.
    PMID: 29131478 DOI: 10.1002/bmb.21089
    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the isolation and characterization of many plant resistance gene analogues (RGAs), is featured in the development of a series of laboratory experiments using important molecular biology techniques. A set of previously isolated RGA sequences is used as the model for performing sequence alignment and visualising 3D protein structure using current bioinformatics programs (Clustal Omega and Argusdock software). A pair of established degenerate primer sequences is provided for the prediction of targeted amino acids sequences in the RGAs. Reverse transcription-polymerase chain reaction (RT-PCR) is used to amplify RGAs from total RNA samples extracted from the tropical wild relative of black pepper, Piper colubrinum (Piperaceae). This laboratory exercise enables students to correlate specific DNA sequences with respective amino acid codes and the interaction between conserved motifs of resistance genes with putatively targeted proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):47-53, 2018.
    Matched MeSH terms: Leucine/genetics; Proteins/genetics*; DNA Primers/genetics*; DNA, Plant/genetics*; Amino Acid Motifs/genetics*; Piper/genetics*
  14. Toegel M, Azzam G, Lee EY, Knapp DJHF, Tan Y, Fa M, et al.
    Nat Commun, 2017 11 21;8(1):1663.
    PMID: 29162808 DOI: 10.1038/s41467-017-01592-3
    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
    Matched MeSH terms: Binding Sites/genetics; Drosophila/genetics*; Luminescent Proteins/genetics; Transcription Factors/genetics*; Transgenes/genetics*; Drosophila Proteins/genetics*
  15. Kondo T, Nishimura S, Tani N, Ng KK, Lee SL, Muhammad N, et al.
    Am J Bot, 2016 Nov;103(11):1912-1920.
    PMID: 27797714
    PREMISE OF THE STUDY: In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering.

    METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.

    KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.

    CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.

    Matched MeSH terms: Pollen/genetics; Seeds/genetics; Microsatellite Repeats/genetics; Flowers/genetics; Seedlings/genetics; Dipterocarpaceae/genetics
  16. Tan JA, George E, Tan KL, Chow T, Tan PC, Hassan J, et al.
    Clin Exp Med, 2004 Dec;4(3):142-7.
    PMID: 15599663 DOI: 10.1007/s10238-004-0048-x
    Beta-thalassemia is the most-common genetic disorder of hemoglobin synthesis in Malaysia, and about 4.5% of the population are heterozygous carriers of the disorder. Prenatal diagnosis was performed for 96 couples using the Amplification Refractory Mutation System and Gap-Polymerase Chain Reaction. We identified 17 beta-globin defects-initiation codon for translation (T-G), -29 (A-G), -28 (A-G), CAP +1 (A-C), CD 8/9 (+G), CD 15 (G-A), CD 17 (A-T), CD 19 (A-G), Hb E (G-A), IVS1-1 (G-T), IVS1-5 (G-C), CD 41/42 (-CTTT), CD 71-72 (+A), IVS2-654 (CT), poly A(A-G), 100-kb Ggamma(Agammadeltabeta) degrees and 45-kb Filipino deletions. The 192 beta-alleles studied comprised Chinese (151 patients), Malay (21), Orang Asli from East Malaysia (15), Filipino (1), Indian (1), Indonesian Chinese (2), and Thai (1). In the Chinese, 2 beta-globin defects at CD 41/42 and IVS2-654 were responsible for 74% of beta-thalassemia. beta-mutations at CD 19, IVS1-1 (G-T), IVS1-5, poly A, and hemoglobin E caused 76% of the hemoglobin disorders in the Malays. The Filipino 45-kb deletion caused 73.3% of bthalassemia in the Orang Asli. Using genomic sequencing, the rare Chinese beta-mutation at CD 43 (G-T) was confirmed in 2 Chinese, and the Mediterranean mutation IVS1-1 (G-A) was observed in a Malay beta-thalassemia carrier. The beta-globin mutations confirmed in this prenatal diagnosis study were heterogenous and 65 (68%) couples showed a different globin defect from each other. The use of specific molecular protocols has allowed rapid and successful prenatal diagnosis of beta-thalassemia in Malaysia.
    Matched MeSH terms: Ethnic Groups/genetics*; Fetal Diseases/genetics; Globins/genetics*; Mutation/genetics; beta-Thalassemia/genetics*; Asian Continental Ancestry Group/genetics*
  17. Khetawat D, Broder CC
    Virol J, 2010 Nov 12;7:312.
    PMID: 21073718 DOI: 10.1186/1743-422X-7-312
    BACKGROUND: Hendra virus (HeV) and Nipah virus (NiV) are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4) containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP) gene encoding human immunodeficiency virus type-1 (HIV-1) genome in conjunction with the HeV and NiV fusion (F) and attachment (G) glycoproteins.

    RESULTS: Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2) peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F.

    CONCLUSIONS: Together, these results demonstrate that a specific henipavirus entry assay has been developed using NiV or HeV F and G glycoprotein pseudotyped reporter-gene encoding retrovirus particles. This assay can be conducted safely under BSL-2 conditions and will be a useful tool for measuring henipavirus entry and studying F and G glycoprotein function in the context of virus entry, as well as in assaying and characterizing neutralizing antibodies and virus entry inhibitors.

    Matched MeSH terms: Glycoproteins/genetics; Luciferases/genetics; Viral Envelope Proteins/genetics; HIV-1/genetics*; Henipavirus/genetics; Green Fluorescent Proteins/genetics
  18. Yap SN, Phipps ME, Manivasagar M, Bosco JJ
    Immunol Lett, 1999 Jun 01;68(2-3):295-300.
    PMID: 10424435
    The neutrophil antigen (NA)1 and 2 is coded by two recognized allelic forms of Fc gamma receptor IIIB (FcgammaRIIIB). FcgammaRIIIb is a low affinity receptor and preferentially removes immune complexes from the circulation. Systemic lupus erythematosus (SLE) is an autoimmune and polygenic disorder characterized by accumulation of autoimmune complexes. The majority of SLE patients in our medical center are of Chinese ethnicity, followed by Malay and Indian. Recently, studies have focussed on the Fc receptors in different ethnic groups and their relation to SLE. We chose to study the gene distribution of this receptor in the Chinese and Malays population in Malaysia. We designed a polymerase chain reaction allele specific primers (PCR-ASP) method to distinguish the two allelic forms. Genomic DNA was isolated from the peripheral blood of 183 Chinese and 55 Malays SLE patients as well as 100 Chinese and 50 Malays healthy controls. Genotyping of Chinese SLE patients revealed that the gene frequencies for FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 were 0.648 and 0.347, while in the ethnically matched healthy controls they were 0.68 and 0.32, respectively. One out of the 183 Chinese SLE patients was identified as a NA-null due to the absence of PCR product for both alleles. The FcgammaRIIIB-NA1 and FcgammaRIIIB-NA2 allele frequencies for both the Malays SLE and healthy controls were 0.62 and 0.38.
    Matched MeSH terms: Isoantigens/genetics*; Lupus Erythematosus, Systemic/genetics*; Antigens, CD/genetics*; Receptors, IgG/genetics*; Asian Continental Ancestry Group/genetics; Continental Population Groups/genetics*
  19. Mok PL, Anandasayanam ANK, Oscar David HM, Tong J, Farhana A, Khan MSA, et al.
    PLoS One, 2021;16(4):e0250552.
    PMID: 33914777 DOI: 10.1371/journal.pone.0250552
    Multiple matrix metalloproteinases have significant roles in tissue organization during lung development, and repair. Imbalance of proteinases may lead to chronic inflammation, changes in tissue structure, and are also highly associated to cancer development. The role of MMP20 is not well studied in lung organogenesis, however, it was previously shown to be present at high level in lung adenocarcinoma. The current study aimed to identify the functional properties of MMP20 on cell proliferation and motility in a lung adenocarcinoma in vitro cell model, and relate the interaction of MMP20 with other molecular signalling pathways in the lung cells after gaining tumoral properties. In this study, two different single guide RNA (sgRNAs) that specifically targeted on MMP20 sites were transfected into human lung adenocarcinoma A549 cells by using CRISPR-Cas method. Following that, the changes of PI3-K, survivin, and MAP-K mRNA gene expression were determined by Real-Time Polymerase Chain Reaction (RT-PCR). The occurrence of cell death was also examined by Acridine Orange/Propidium Iodide double staining. Meanwhile, the motility of the transfected cells was evaluated by wound healing assay. All the data were compared with non-transfected cells as a control group. Our results demonstrated that the transfection of the individual sgRNAs significantly disrupted the proliferation of the A549 cell line through suppression in the gene expression of PI3-K, survivin, and MAP-K. When compared to non-transfected cells, both experimental cell groups showed reduction in the migration rate, as reflected by the wider gaps in the wound healing assay. The current study provided preliminary evidence that MMP20 could have regulatory role on stemness and proliferative genes in the lung tissues and affect the cell motility. It also supports the notion that targeting MMP20 could be a potential treatment mode for halting cancer progression.
    Matched MeSH terms: Cell Movement/genetics; Apoptosis/genetics; Organogenesis/genetics; Cell Proliferation/genetics; Matrix Metalloproteinase 20/genetics*; CRISPR-Cas Systems/genetics
  20. Shu X, Long J, Cai Q, Kweon SS, Choi JY, Kubo M, et al.
    Nat Commun, 2020 Mar 05;11(1):1217.
    PMID: 32139696 DOI: 10.1038/s41467-020-15046-w
    Known risk variants explain only a small proportion of breast cancer heritability, particularly in Asian women. To search for additional genetic susceptibility loci for breast cancer, here we perform a meta-analysis of data from genome-wide association studies (GWAS) conducted in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and 105,974 controls). We identified 31 potential novel loci with the lead variant showing an association with breast cancer risk at P 
    Matched MeSH terms: Breast Neoplasms/genetics*; Multifactorial Inheritance/genetics; Polymorphism, Single Nucleotide/genetics; Quantitative Trait Loci/genetics; European Continental Ancestry Group/genetics*; Asian Continental Ancestry Group/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links