Displaying publications 801 - 820 of 1088 in total

Abstract:
Sort:
  1. Saremi K, Rad SK, Khalilzadeh M, Hussaini J, Majid NA
    Acta Biochim Biophys Sin (Shanghai), 2020 Jan 02;52(1):26-37.
    PMID: 31889181 DOI: 10.1093/abbs/gmz140
    Chlorine is shown to possess anti-gastric ulcer activity, since it can inactivate Helicobacter pylori, which is regarded as one of the most common risk factors for causing gastric problems. In the current study, the gastroprotective property of a novel dichloro-substituted Schiff base complex, 2, 2'- [-1, 2-cyclohexanediylbis(nitriloethylidyne)] bis(4-chlorophenol) (CNCP), against alcohol-induced gastric lesion in SD rats was assessed. SD rats were divided into four groups, i.e. normal, ulcer control, testing, and reference groups. Ulcer area, gastric wall mucus, and also gastric acidity of the animal stomachs were measured. In addition, antioxidant activity of CNCP was evaluated and its safe dose was identified. Immunohistochemistry staining was also carried to evaluate two important proteins, i.e. Bcl2-associated X protein (Bax) and heat shock protein 70 (HSP70). Moreover, the activities of super oxide dismutase and catalase, as well as the levels of prostaglandin E2 (PGE2) and malondialdehyde (MDA) were also measured. Antioxidant activity of CNCP was approved via the aforementioned experiments. Histological evaluations showed that the compound possesses stomach epithelial defense activity. Additionally, periodic acid-Schiff staining exhibited over-expression of HSP70 and down-expression of Bax protein in the CNCP-treated rats. Moreover, CNCP caused deceased MDA level and elevated PGE2 level, and at the same time increased the activities of the two enzymes.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  2. Navaneethan RD, N C J PL, Ramaiah M, Ravindran R, T AK, Chinnathambi A, et al.
    Nanotechnology, 2024 Feb 21;35(19).
    PMID: 38320329 DOI: 10.1088/1361-6528/ad26d9
    The phytochemicals found inCaralluma pauciflorawere studied for their ability to reduce silver nitrate in order to synthesise silver nanoparticles (AgNPs) and characterise their size and crystal structure. Thunbergol, 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetram, Methyl nonadecanoate, Methyl cis-13,16-Docosadienate, and (1R,4aR,5S)-5-[(E)-5-Hydroxy-3-methylpent were the major compounds identified in the methanol extract by gas chromatography-mass spectrum analysis. UV/Vis spectra, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscope with Energy Dispersive Xâray Analysis (EDAX), Dynamic Light Scattering (DLS) particle size analyser and atomic force microscope (AfM) were used to characterise theCaralluma paucifloraplant extract-based AgNPs. The crystal structure and estimated size of the AgNPs ranged from 20.2 to 43 nm, according to the characterization data. The anti-cancer activity of silver nanoparticles (AgNPs) synthesised fromCaralluma paucifloraextract. The AgNPs inhibited more than 60% of the AGS cell lines and had an IC50 value of 10.9640.318 g, according to the findings. The cells were further examined using fluorescence microscopy, which revealed that the AgNPs triggered apoptosis in the cells. Furthermore, the researchers looked at the levels of reactive oxygen species (ROS) in cells treated with AgNPs and discovered that the existence of ROS was indicated by green fluorescence. Finally, apoptotic gene mRNA expression analysis revealed that three target proteins (AKT, mTOR, and pI3K) were downregulated following AgNP therapy. Overall, the findings imply that AgNPs synthesised from Caralluma pauciflora extract could be used to treat human gastric cancer.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  3. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Jaafar F, et al.
    Sci Rep, 2020 06 02;10(1):8962.
    PMID: 32488024 DOI: 10.1038/s41598-020-65570-4
    Vitamin E acts as an antioxidant and reduces the level of reactive oxygen species (ROS) in Alzheimer's disease (AD). Alpha-tocopherol (ATF) is the most widely studied form of vitamin E besides gamma-tocopherol (GTF) which also shows beneficial effects in AD. The levels of amyloid-beta (Aβ) and amyloid precursor protein (APP) increased in the brains of AD patients, and mutations in the APP gene are known to enhance the production of Aβ. Mitochondrial function was shown to be affected by the increased level of Aβ and may induce cell death. Here, we aimed to compare the effects of ATF and GTF on their ability to reduce Aβ level, modulate mitochondrial function and reduce the apoptosis marker in SH-SY5Y cells stably transfected with the wild-type or mutant form of the APP gene. The Aβ level was measured by ELISA, the mitochondrial ROS and ATP level were quantified by fluorescence and luciferase assay respectively whereas the complex V enzyme activity was measured by spectrophotometry. The expressions of genes involved in the regulation of mitochondrial membrane permeability such as voltage dependent anion channel (VDAC1), adenine nucleotide translocase (ANT), and cyclophilin D (CYPD) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), while the expressions of cyclophilin D (CypD), cytochrome c, Bcl2 associated X (BAX), B cell lymphoma-2 (Bcl-2), and pro-caspase-3 were determined by western blot. Our results showed that mitochondrial ROS level was elevated accompanied by decreased ATP level and complex V enzyme activity in SH-SY5Y cells expressing the mutant APP gene (p 
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  4. Lew SY, Lim SH, Lim LW, Wong KH
    BMC Complement Med Ther, 2020 Nov 11;20(1):340.
    PMID: 33176761 DOI: 10.1186/s12906-020-03132-x
    BACKGROUND: Hericium erinaceus is a culinary and medicinal mushroom in Traditional Chinese Medicines. It has numerous pharmacological effects including immunomodulatory, anti-tumour, anti-microbial, anti-aging and stimulation of nerve growth factor (NGF) synthesis, but little is known about its potential role in negating the detrimental effects of oxidative stress in depression. The present study investigated the neuroprotective effects of H. erinaceus standardised aqueous extract (HESAE) against high-dose corticosterone-induced oxidative stress in rat pheochromocytoma (PC-12) cells, a cellular model mimicking depression.

    METHODS: PC-12 cells was pre-treated with HESAE for 48 h followed by 400 μM corticosterone for 24 h to induce oxidative stress. Cells in complete medium without any treatment or pre-treated with 3.125 μg/mL desipramine served as the negative and positive controls, respectively. The cell viability, lactate dehydrogenase (LDH) release, endogenous antioxidant enzyme activities, aconitase activity, mitochondrial membrane potentials (MMPs), intracellular reactive oxygen species (ROS) levels and number of apoptotic nuclei were quantified. In addition, HESAE ethanol extract was separated into fractions by chromatographic methods prior to spectroscopic analysis.

    RESULTS: We observed that PC-12 cells treated with high-dose corticosterone at 400 μM had decreased cell viability, reduced endogenous antioxidant enzyme activities, disrupted mitochondrial function, and increased oxidative stress and apoptosis. However, pre-treatment with HESAE ranging from 0.25 to 1 mg/mL had increased cell viability, decreased LDH release, enhanced endogenous antioxidant enzyme activities, restored MMP, attenuated intracellular ROS and protected from ROS-mediated apoptosis. The neuroprotective effects could be attributed to significant amounts of adenosine and herierin III isolated from HESAE.

    CONCLUSIONS: HESAE demonstrated neuroprotective effects against high-dose corticosterone-induced oxidative stress in an in vitro model mimicking depression. HESAE could be a potential dietary supplement to treat depression.

    Matched MeSH terms: Reactive Oxygen Species/metabolism
  5. Mohd Zahari MA, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, Hassan MA
    J Biomed Biotechnol, 2012;2012:125865.
    PMID: 23133311 DOI: 10.1155/2012/125865
    Factors influencing poly(3-hydroxybutyrate) P(3HB) production by Cupriavidus necator CCUG52238(T) utilizing oil palm frond (OPF) juice were clarified in this study. Effects of initial medium pH, agitation speed, and ammonium sulfate (NH(4))(2)SO(4) concentration on the production of P(3HB) were investigated in shake flasks experiments using OPF juice as the sole carbon source. The highest P(3HB) content was recorded at pH 7.0, agitation speed of 220 rpm, and (NH(4))(2)SO(4) concentration at 0.5 g/L. By culturing the wild-type strain of C. necator under the aforementioned conditions, the cell dry weight (CDW) and P(3HB) content obtained were 9.31 ± 0.13 g/L and 45 ± 1.5 wt.%, respectively. This accounted for 40% increment of P(3HB) content compared to the nonoptimized condition. In the meanwhile, the effect of dissolved oxygen tension (DOT) on P(3HB) production was investigated in a 2-L bioreactor. Highest CDW (11.37 g/L) and P(3HB) content (44 wt.%) were achieved when DOT level was set at 30%. P(3HB) produced from OPF juice had a tensile strength of 40 MPa and elongation at break of 8% demonstrated that P(3HB) produced from renewable and cheap carbon source is comparable to those produced from commercial substrate.
    Matched MeSH terms: Oxygen/pharmacology
  6. Hayyan M, Looi CY, Hayyan A, Wong WF, Hashim MA
    PLoS One, 2015;10(2):e0117934.
    PMID: 25679975 DOI: 10.1371/journal.pone.0117934
    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  7. Shamsudin NF, Leong SW, Koeberle A, Suriya U, Rungrotmongkol T, Chia SL, et al.
    Future Med Chem, 2024 Aug 02;16(15):1499-1517.
    PMID: 38949858 DOI: 10.1080/17568919.2024.2363668
    Aim: Chromones are promising for anticancer drug development.Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 μM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 μM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1.Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.
    Matched MeSH terms: Reactive Oxygen Species/metabolism
  8. Liau KF, Shoji T, Ong YH, Chua AS, Yeoh HK, Ho PY
    Bioprocess Biosyst Eng, 2015 Apr;38(4):729-37.
    PMID: 25381606 DOI: 10.1007/s00449-014-1313-3
    A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  9. Mohamed I, Othman F, Ibrahim AI, Alaa-Eldin ME, Yunus RM
    Environ Monit Assess, 2015 Jan;187(1):4182.
    PMID: 25433545 DOI: 10.1007/s10661-014-4182-y
    This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  10. Madani G, Nekaris KA
    PMID: 25309586 DOI: 10.1186/1678-9199-20-43
    BACKGROUND: Asian slow lorises (Nycticebus spp.) are one of few known venomous mammals, yet until now only one published case report has documented the impact of their venomous bite on humans. We describe the reaction of a patient to the bite of a subadult Nycticebus kayan, which occurred in the Mulu District of Sarawak in 2012.

    FINDINGS: Within minutes of the bite, the patient experienced paraesthesia in the right side of the jaw, ear and right foot. By 40 minutes, swelling of the face was pronounced. The patient was admitted to Mulu National Park Health Clinic/Klinik Kesihatan Taman Mulu Tarikh, at which time he was experiencing: swollen mouth, chest pain, mild abdominal pain, nausea, numbness of the lips and mouth, shortness of breath, weakness, agitation and the sensation of pressure in the ears due to swelling. The blood pressure was 110/76, the heart ratio was 116 and oxygen saturation was 96%. The patient was treated intramuscularly with adrenaline (0.5 mL), followed by intravenous injection of hydrocortisone (400 mg) and then intravenous fluid therapy of normal saline (500 mg). By 8 h10 the next day, the patient's condition had significantly improved with no nausea, and with blood pressure and pulse rate stable.

    CONCLUSIONS: A handful of anecdotes further support the real danger that slow loris bites pose to humans. As the illegal pet trade is a major factor in the decline of these threatened species, we hope that by reporting on the danger of handling these animals it may help to reduce their desirability as a pet.
    Matched MeSH terms: Oxygen
  11. Ting SC, Ismail AR, Malek MA
    J Environ Manage, 2013 Nov 15;129:260-5.
    PMID: 23968912 DOI: 10.1016/j.jenvman.2013.07.022
    This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  12. Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Abdul Rahman R, Hasan Kadhum AA
    J Environ Manage, 2013 May 30;121:179-90.
    PMID: 23542216 DOI: 10.1016/j.jenvman.2013.02.016
    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  13. Abu Amr SS, Aziz HA, Adlan MN
    Waste Manag, 2013 Jun;33(6):1434-41.
    PMID: 23498721 DOI: 10.1016/j.wasman.2013.01.039
    The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  14. Abu Amr SS, Aziz HA
    Waste Manag, 2012 Sep;32(9):1693-8.
    PMID: 22633680 DOI: 10.1016/j.wasman.2012.04.009
    Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  15. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Bioresour Technol, 2012 Aug;118:633-7.
    PMID: 22704829 DOI: 10.1016/j.biortech.2012.05.090
    The objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  16. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ
    J Hazard Mater, 2011 May 15;189(1-2):404-13.
    PMID: 21420786 DOI: 10.1016/j.jhazmat.2011.02.052
    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  17. Abdullah N, Ujang Z, Yahya A
    Bioresour Technol, 2011 Jun;102(12):6778-81.
    PMID: 21524907 DOI: 10.1016/j.biortech.2011.04.009
    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.
    Matched MeSH terms: Biological Oxygen Demand Analysis
  18. Perera J, Tan JH, Jeevathayaparan S, Chakravarthi S, Haleagrahara N
    Cell Biosci, 2011;1(1):12.
    PMID: 21711768 DOI: 10.1186/2045-3701-1-12
    Haloperidol is an antipsychotic drug that exerts its' antipsychotic effects by inhibiting dopaminergic neurons. Although the exact pathophysiology of haloperidol extrapyramidal symptoms are not known, the role of reactive oxygen species in inducing oxidative stress has been proposed as one of the mechanisms of prolonged haloperidol-induced neurotoxicity. In the present study, we evaluate the protective effect of alpha lipoic acid against haloperidol-induced oxidative stress in the rat brain. Sprague Dawley rats were divided into control, alpha lipoic acid alone (100 mg/kg p.o for 21 days), haloperidol alone (2 mg/kg i.p for 21 days), and haloperidol with alpha lipoic acid groups (for 21 days). Haloperidol treatment significantly decreased levels of the brain antioxidant enzymes super oxide dismutase and glutathione peroxidase and concurrent treatment with alpha lipoic acid significantly reversed the oxidative effects of haloperidol. Histopathological changes revealed significant haloperidol-induced damage in the cerebral cortex, internal capsule, and substantia nigra. Alpha lipoic acid significantly reduced this damage and there were very little neuronal atrophy. Areas of angiogenesis were also seen in the alpha lipoic acid-treated group. In conclusion, the study proves that alpha lipoic acid treatment significantly reduces haloperidol-induced neuronal damage.
    Matched MeSH terms: Reactive Oxygen Species
  19. Ismail TS
    Med J Malaysia, 2009 Sep;64(3):250-5; quiz 256.
    PMID: 20527283 MyJurnal
    Acute exacerbations of chronic obstructive pulmonary disease (COPD) are important events in COPD patients and place a large burden on healthcare resources. COPD patients with frequent exacerbations have accelerated decline in lung function, poorer health status and are at higher risk of mortality. The mainstay of treatment includes increasing short acting bronchodilator therapy and systemic glucocorticosteroids with or without antibiotics. Non invasive ventilation is indicated in those with respiratory failure with acidosis or hypercapnia. Preventive strategies to reduce exacerbations include smoking cessation, immunisation against influenza and S. pneumonia, chronic maintenance inhaled pharmacotherapy, pulmonary rehabilitation and self management education.
    Matched MeSH terms: Oxygen Inhalation Therapy
  20. Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H, Chelliapan S
    Bioresour Technol, 2013 Apr;133:630-4.
    PMID: 23453799 DOI: 10.1016/j.biortech.2013.01.149
    The present study demonstrated that aerobic granular sludge is capable of treating livestock wastewater from a cattle farm in a sequencing batch reactor (SBR) without the presence of support material. A lab scale SBR was operated for 80 d using 4 h cycle time with an organic loading rate (OLR) of 9 kg COD m(-3) d(-1). Results showed that the aerobic granules were growing from 0.1 to 4.1 mm towards the end of the experimental period. The sludge volume index (SVI) was 42 ml g(-1) while the biomass concentration in the reactor grew up to 10.3 g L(-1) represent excellent biomass separation and good settling ability of the granules. During this period, maximum COD, TN and TP removal efficiencies (74%, 73% and 70%, respectively) were observed in the SBR system, confirming high microbial activity in the SBR system.
    Matched MeSH terms: Biological Oxygen Demand Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links