Displaying publications 861 - 880 of 6933 in total

Abstract:
Sort:
  1. Danagody B, Bose N, Rajappan K, Iqbal A, Ramanujam GM, Anilkumar AK
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):468-481.
    PMID: 38078836 DOI: 10.1021/acsbiomaterials.3c00892
    Developing biomaterial scaffolds using tissue engineering with physical and chemical surface modification processes can improve the bioactivity and biocompatibility of the materials. The appropriate substrate and site for cell attachment are crucial in cell behavior and biological activities. Therefore, the study aims to develop a conventional electrospun nanofibrous biomaterial using reproducible surface topography, which offers beneficial effects on the cell activities of bone cells. The bioactive MgO/gC3N4 was incorporated on PAN/PEG and fabricated into a nanofibrous membrane using electrospinning. The nanocomposite uniformly distributed on the PAN/PEG nanofiber helps to increase the number of induced pores and reduce the hydrophobicity of PAN. The physiochemical characterization of prepared nanoparticles and nanofibers was carried out using FTIR, X-ray diffraction (XRD), thermogravimetry analysis (TGA), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. SEM and TEM analyses examined the nanofibrous morphology and the structure of MgO/gC3N4. In vitro studies such as on ALP activity demonstrated the membrane's ability to regenerate new bone and healing capacity. Furthermore, alizarin red staining showed the increasing ability of the cell-cell interaction and calcium content for tissue regeneration. The cytotoxicity of the prepared membrane was about 97.09% of live THP-1 cells on the surface of the MgO/gC3N4@PAN/PEG membrane evaluated using MTT dye staining. The soil burial degradation analysis exhibited that the maximum degradation occurs on the 45th day because of microbial activity. In vitro PBS degradation was observed on the 15th day after the bulk hydrolysis mechanism. Hence, on the basis of the study outcomes, we affirm that the MgO/gC3N4@PAN/PEG nanofibrous membrane can act as a potential bone regenerative substrate.
    Matched MeSH terms: Magnesium Oxide/pharmacology
  2. Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, et al.
    Ultrason Sonochem, 2023 Dec;101:106702.
    PMID: 38041881 DOI: 10.1016/j.ultsonch.2023.106702
    Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
    Matched MeSH terms: Phenols/pharmacology
  3. Lithanatudom P, Chawansuntati K, Saenjum C, Chaowasku T, Rattanathammethee K, Wungsintaweekul B, et al.
    BMC Res Notes, 2023 Dec 22;16(1):381.
    PMID: 38135870 DOI: 10.1186/s13104-023-06664-w
    OBJECTIVE: Plants in the Annonaceae family are known for having abundant biologically active secondary metabolites. They have been used in alternative drugs for various diseases in several countries, for instance, the bark of Cananga odorata (Lam.) Hook and Thomson is used for Ophthalmic inflammation and wound healing in Malaysia. Extracts from the leaves and stems of four Annonaceae plants, namely Uvaria longipes (Craib) L.L.Zhou, Y.C.F.Su & R.M.K.Saunders, Dasymaschalon sp., Artabotrys burmanicus A.DC, and Marsypopetalum modestum (Pierre) B.Xue & R.M.K.Saunders were investigated for growth inhibitory activity against blood-stage Plasmodium falciparum growth in vitro and for non-specific cytotoxicity against normal peripheral blood mononuclear cells (PBMCs). Antimalarial activity was assessed by invasion inhibition assay and the percentage of infected red blood cells on blood smears were determined. Cytotoxicity was tested by culturing PBMCs with the extracts, and viabilities were determined by Annexin V/propidium iodide staining.

    RESULTS: A. burmanicus stem extract and M. modestum leaf extract were capable of inhibiting growth of P. falciparum when used at 200 µg/mL compared to chloroquine. The extracts at effective concentrations, did not affect the viability of PBMCs. These results support further need for characterization of active compounds from specific Annonaceae plants in order to exploit their components for potential malaria treatment.

    Matched MeSH terms: Plant Extracts/pharmacology
  4. Juwita T, Melyani Puspitasari I, Levita J
    Pak J Biol Sci, 2018 Jan;21(4):151-165.
    PMID: 30311471 DOI: 10.3923/pjbs.2018.151.165
    In order to propose a prospective candidate for novel complementary phytopharmaceuticals, one of Zingiberaceae family plant, Etlingeraelatior or torch ginger, was being evaluated. The aim of this review was to provide a comprehensive literature research focused on the botanical aspects, nutritional quality, phytoconstituents and pharmacological activities of E. elatior. Researches on this particular plant were conducted in Malaysia (55.5%), Indonesia (33.3%), Thailand (8.3%) and Singapore (2.7%). This review article has revealed that the most prominent pharmacological activities were anti-microbial, anti-oxidant and anti-tumor activities in consistent with the dominated levels of flavonoids, terpenoids and phenols. However, extended and integrated research should be converged towards intensive investigations concerning to isolated phytoconstituents and its bioactivities, pharmacokinetics, bioavailability, molecular mechanism of its specific pharmacological activities, safety and efficacy studies for further development.
    Matched MeSH terms: Plant Extracts/pharmacology*
  5. Hasbullah NA, Taha RM, Awal A
    Pak J Biol Sci, 2008 Jun 01;11(11):1449-54.
    PMID: 18817245
    Regeneration potentials in Gerbera jamesonii Bolus ex. Hook f. from tissues culture system was studied using leaf, petiole and root explants. In vitro regeneration, callus induction and root formation were optimized by manipulation of growth regulators during organogenesis. Various kinds of plant growth regulators such as 6-Benzylaminopurine (BAP), alpha-Naphthalene acetic acid (NAA), 2, 4-Dichlorophenoxyacetic acid (2,4-D), Indole-3-acetic acid (IAA), Indole-3-Butyric acid (IBA), N6-[2-Isopentenyl]adenine (2iP), Kinetin and Zeatin were used to initiate cultures. These plant growth regulators were added to Murashige and Skoog medium in different combinations and concentrations. Adventitious shoots were obtained from petiole explants cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg L(-1) BAP and 0.5 mg L(-1) NAA. Effectiveness of shoot regeneration medium, type of growth regulator used and duration of induction period were investigated. Leaf explants cultured on MS medium supplemented with 1.0 mg L(-1) BAP and 2.0 mg L(-1) 2, 4-D showed the best results for callus induction. Root explants were found to be non-regenerative in all experiments conducted. Petiole segment was identified as the best explant for regeneration of this species. Regenerated plants were rooted on Murashige and Skoog basal medium. Plantlets were then transferred to field with 75% survival rate.
    Matched MeSH terms: Plant Growth Regulators/pharmacology
  6. Hamad AM, Taha RM
    Pak J Biol Sci, 2008 Feb 01;11(3):386-91.
    PMID: 18817160
    Seven different hormone treatments, namely 6-benzylaminopurine (BAP) at 2, 3 mg L(-1) was applied singly and in combination with Indole Acetic Acid (IAA) at 0.18, 0.8 and 1.8 mg L(-l), BAP at 3.3 mg L(-l) in combination with IAA at 1.8 and 3.3 mg L(-l) and triple combination of BAP at 2.3, IAA at 1.8 and Gibberellic acid (GA3) at 1.0 mg L(-1) were tested, over four different incubation periods of 30, 45, 60 and 75 days, for their effect in the proliferation and growth of Smooth cayenne pineapple shoot-tip culture. Combined application of BAP at 3.3 and IAA at 1.8 mg L(-1) induced the highest proliferation of 19 shoots/explant and the highest total of 121 and 125 shoots over 4 cycles of multiplication. Raising the IAA to 3.3 mg L(-1) resulted in the lowest proliferation and stunted shoots. Incorporation of GA3 improved the shoot length but caused drastic reduction in proliferation. The other treatments showed an intermediate effect.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  7. Fugaban JII, Dioso CM, Choi GH, Bucheli JEV, Liong MT, Holzapfel WH, et al.
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):35-52.
    PMID: 36445687 DOI: 10.1007/s12602-022-10017-7
    The aim of this project was to screen for bacteriocinogenic Bacillus strains with activity versus Staphylococcus spp. with future application in formulation of pharmaceutical antimicrobial preparations. Putative bacteriocinogenic strains, isolated and pre-identified as Bacillus spp. were selected for future study and differentiated based on repPCR and identified as Bacillus subtilis for strains ST826CD and ST829CD, Bacillus subtilis subsp. stercoris for strain ST794CD, Bacillus subtilis subsp. spizizenii for strain ST824CD, Bacillus velezensis for strain ST796CD, and Bacillus tequilensis for strain ST790CD. Selected strains were evaluated regarding their safety/virulence, beneficial properties, and potential production of antimicrobials based on biomolecular and physiological approves. Expressed bacteriocins were characterized regarding their proteinaceous nature, stability at different levels of pH, temperatures, and the presence of common chemicals applied in bacterial cultivation and bacteriocin purification. Dynamic of bacterial growth, acidification, and cumulation of produced bacteriocins and some aspects of the bacteriocins mode of action were evaluated. Based on obtained results, isolation and application of expressed antimicrobials can be realistic scenario for treatment of some staphylococcal associated infections. Appropriate biotechnological approaches need to be developed for cost effective production, isolation, and purification of expressed antimicrobials by studied Bacillus strains.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Othman SH, Shapi'i RA, Ronzi NDA
    Carbohydr Polym, 2024 Apr 01;329:121735.
    PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735
    Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
    Matched MeSH terms: Antioxidants/pharmacology
  9. Salleh WMNHW, Salihu AS, Ab Ghani N
    Nat Prod Res, 2024;38(4):629-633.
    PMID: 36794425 DOI: 10.1080/14786419.2023.2180507
    This study was designed to examine the essential oils compositions of Litsea glauca Siebold and Litsea fulva Fern.-Vill. growing in Malaysia. The essential oils were achieved by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The study identified 17 and 19 components from the leaf oils from L. glauca (80.7%) and L. fulva (81.5%), respectively. The major components of L. glauca oil were β-selinene (30.8%), β-calacorene (11.3%), tridecanal (7.6%), isophytol (4.8%) and β-eudesmol (4.5%); whereas in L. fulva oil gave β-caryophyllene (27.8%), caryophyllene oxide (12.8%), α-cadinol (6.3%), (E)-nerolidol (5.7%), β-selinene (5.5%) and tridecanal (5.0%). Anticholinesterase activity was evaluated using Ellman method. The essential oils showed moderate inhibitory activity on acetylcholinesterase and butyrylcholinesterase assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from the genus Litsea.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  10. Shaheen S, Khalid S, Siqqique R, Abbas M, Ifikhar T, Ijaz I, et al.
    Microb Pathog, 2023 Dec;185:106428.
    PMID: 37977480 DOI: 10.1016/j.micpath.2023.106428
    In the present research project, the first report on comparative analysis of the taxonomical, biological and pharmacological potential of healthy and geminivirus infected Hibiscus rosa sinensis (L.) leaves of the family Malvaceae was done by using different micro and macroscopic techniques. First of all, leaves were characterized for Cotton leaf curl Multan virus (CLCuMuV) and its associated betasatellite (Cotton leaf curl Multan Betasatellite; CLCuMB). Different morphological parameters like shape and size of stem, leaves, seeds and roots, presence and absence of ligule, distance between nodes and internodes and type of inflorescence etc. were analyzed. CLCuMuV infected H. rosa-sinensis revealed systematic symptoms of infection like chlorosis of leaves, stunted growth, decrease in size of roots, shoots and distortion etc. Anatomical investigation was performed under light ad scanning electron microscope. Different anatomical features like length and shape of guard cells, subsidiary cells, presence or absence of stomata, secretory ducts and trichomes were examined. In both plant samples anomocytic types of stomata and elongated, non-glandular and pointed tip trichomes were present, but the size (especially length and width) of trichomes and other cells like epidermal, subsidiary, and guard cells were highest in virus infected plants likened to healthy one. In the antibacterial activity, the maximum antibacterial potentail was seen in methanolic extract of K. pneumonea while antifungal activity was shown by methanolic extract of A. solani. Plants interact with different biological entities according to environmental conditions continuously and evolved. These types of interactions induce changes positively and negatively on plant metabolism and metabolites production. Many plant viruses also attacked various host plants consequently alter their secondary metabolism. To overcome such virus infected plants produces many important and different types of secondary plant metabolites as a defense response. Subsequent analysis of this n-hexane plant extract using Gas chromatography mass spectroscopy technique revealed that Hibiscus eluted contained 10 main compounds in Healthy sample and 13 compounds in infected one. Presence of essential secondary metabolites were also analyzed by FTIR analysis. The present study provides a comprehensive and novel review on taxonomy (morphology, anatomy) and antimicrobial potential of both healthy and geminivirus infected H. rosa-sinensis.
    Matched MeSH terms: Plant Extracts/pharmacology
  11. Mohd Sahardi NFN, Jaafar F, Tan JK, Mad Nordin MF, Makpol S
    Nutrients, 2023 Oct 25;15(21).
    PMID: 37960173 DOI: 10.3390/nu15214520
    (1) Background: Muscle loss is associated with frailty and a reduction in physical strength and performance, which is caused by increased oxidative stress. Ginger (Zingiber officinale Roscoe) is a potential herb that can be used to reduce the level of oxidative stress. This study aimed to determine the effect of ginger on the expression of metabolites and their metabolic pathways in the myoblast cells to elucidate the mechanism involved and its pharmacological properties in promoting myoblast differentiation. (2) Methods: The myoblast cells were cultured into three stages (young, pre-senescent and senescent). At each stage, the myoblasts were treated with different concentrations of ginger extract. Then, metabolomic analysis was performed using liquid chromatography-tandem mass spectrometry (LCMS/MS). (3) Results: Nine metabolites were decreased in both the pre-senescent and senescent control groups as compared to the young control group. For the young ginger-treated group, 8-shogaol and valine were upregulated, whereas adipic acid and bis (4-ethyl benzylidene) sorbitol were decreased. In the pre-senescent ginger-treated group, the niacinamide was upregulated, while carnitine and creatine were downregulated. Ginger treatment in the senescent group caused a significant upregulation in 8-shogaol, octadecanamide and uracil. (4) Conclusions: Ginger extract has the potential as a pharmacological agent to reduce muscle loss in skeletal muscle by triggering changes in some metabolites and their pathways that could promote muscle regeneration in ageing.
    Matched MeSH terms: Plant Extracts/pharmacology
  12. Abdul-Aziz Ahmed K, Jabbar AAJ, Abdulla MA, Zuhair Alamri Z, Ain Salehen N, Abdel Aziz Ibrahim I, et al.
    Sci Rep, 2024 Jan 08;14(1):813.
    PMID: 38191592 DOI: 10.1038/s41598-023-50947-y
    Mangiferin (MF) is a natural C-glucosylxantone compound that has many substantial curative potentials against numerous illnesses including cancers. The present study's goal is to appraise the chemo preventive possessions of MF on azoxymethane (AOM)-mediated colonic aberrant crypt foci (ACF) in rats. Rats clustered into 5 groups, negative control (A), inoculated subcutaneously with normal saline twice and nourished on 0.5% CMC; groups B-E injected twice with 15 mg/kg azoxymethane followed by ingestion of 0.5% CMC (B, cancer control); intraperitoneal inoculation of 35 mg/kg 5-fluorouracil (C, reference rats) or nourished on 30 mg/kg (D) and 60 mg/kg (E) of MF. Results of gross morphology of colorectal specimens showed significantly lower total colonic ACF incidence in MF-treated rats than that of cancer controls. The colon tissue examination of cancer control rats showed increased ACF availability with bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands compared to MF-treated rats. Mangiferin treatment caused increased regulation of pro-apoptotic (increased Bax) proteins and reduced the β-catenin) proteins expression. Moreover, rats fed on MF had significantly higher glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lower malondialdehyde (MDA) concentrations in their colonic tissue homogenates. Mangiferin supplementation significantly down-shifted pro-inflammatory cytokines (transforming growth factor-α and interleukine-6) and up-shifted anti-inflammatory cytokines (interleukine-10) based on serum analysis. The chemo-protective mechanistic of MF against AOM-induced ACF, shown by lower ACF values and colon tissue penetration, could be correlated with its positive modulation of apoptotic cascade, antioxidant enzymes, and inflammatory cytokines originating from AOM oxidative stress insults.
    Matched MeSH terms: Antioxidants/pharmacology
  13. Marunganathan V, Kumar MSK, Kari ZA, Giri J, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Jan 07;51(1):89.
    PMID: 38184807 DOI: 10.1007/s11033-023-09146-1
    BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens.

    METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay.

    RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 μg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes.

    CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.

    Matched MeSH terms: Carrageenan/pharmacology
  14. Balaraman P, Balasubramanian B, Liu WC, Kaliannan D, Durai M, Kamyab H, et al.
    Environ Res, 2022 Mar;204(Pt C):112278.
    PMID: 34757031 DOI: 10.1016/j.envres.2021.112278
    Recently, the phyco-synthesis of nanoparticles has been applied as a reliable approach to modern research field, and it has yielded a wide spectrum of diverse uses in fields such as biological science and environmental science. This study used marine natural resource seaweed Sargassum myriocystum due to their unique phytochemicals and their significant attributes in giving effective response on various biomedical applications. The response is created by their stress-tolerant environmental adaptations. This inspired us to make an attempt using the above-mentioned charactersitics. Therfore, the current study performed phycosynthesis of titanium dioxide nanoparticles (TiO2-NPs) utilising aqueous extracts of S. myriocystum. The TiO2-NPs formation was confirmed in earlier UV-visible spectroscopy analysis. The crystalline structure, functional groups (phycomolecules), particle morphology (cubic, square, and spherical), size (∼50-90 nm), and surface charge (negative) of the TiO2-NPs were analysed and confirmed by various characterisation analyses. In addition, the seaweed-mediated TiO2-NPs was investigated, which showed potential impacts on antibacterial activity and anti-biofilm actions against pathogens (Staphylococcus aureus, S. epidermidis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, and Klebsiella pneumoniae). Additionally, some evaluations were performed on larvicidal activities of TiO2-NPs in oppose to Aedes aegypti and Culex quinquefasciatus mosquitos and the environmental effects of photocatalytic activities against methylene blue and crystal violet under sunlight irradiation. The highest percent of methylene blue degradation was observed at 92.92% within 45 min. Overall, our findings suggested that S. myriocystum mediates TiO2-NPs to be a potent disruptive material for bacterial pathogens and mosquito larvae and also to enhance the photocatalytic dye degradation.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Holland I, Bakri YM, Sakoff J, Zaleta Pinet D, Motti C, van Altena I
    Phytochemistry, 2021 Aug;188:112798.
    PMID: 34020274 DOI: 10.1016/j.phytochem.2021.112798
    As part of our ongoing study of the specialised metabolites present in brown algae belonging to the Cystophora genus, eight new steroids including three pairs of diastereoisomers were isolated from Cystophora xiphocarpa (Harvey) (Sargassacea, Fucales). The metabolites identified by standard spectrometric methods are (16S,22S)-16,22-dihydroxyergosta-4,24(28)-dien-3-one and (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one, (16S,22S,24R)-16,22,24-trihydroxyporifera-4,28-dien-3-one and (16S,22S,24S)-16,22,24-trihydroxystigma-4,28-dien-3-one along with (16S,22S,24E)-16,22-dihydroxystigma-4,24(28)-dien-3-one and (16S,20S)-16,20-dihydroxyergosta-4,24(28)-dien-3-one. (16S,22S,24E)-16,22-Dihydroxystigma-4,24(28)-dien-3-one possessed the most potent cytotoxicity of the steroids in this series with cell growth inhibitions of GI50 8.7 ± 0.7 μM against colon cancer HT29, GI50 5.6 ± 0.8 μM against the breast cancer line MCF-7 and GI50 4.5 ± 0.2 μM against the ovarian cancer cell line A2780. (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one was found to be active against the ovarian cancer cell line A2780 with a GI50 of 6.2 ± 0.1 μM.
    Matched MeSH terms: Steroids/pharmacology
  16. De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, et al.
    Microbiol Spectr, 2024 Jan 11;12(1):e0321923.
    PMID: 38084971 DOI: 10.1128/spectrum.03219-23
    Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128230.
    PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230
    Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Ejaz U, Afzal M, Mazhar M, Riaz M, Ahmed N, Rizg WY, et al.
    Int J Nanomedicine, 2024;19:453-469.
    PMID: 38250190 DOI: 10.2147/IJN.S446017
    INTRODUCTION: Silver nanoparticles (AgNPs) have been found to exhibit unique properties which show their potential to be used in various therapies. Green synthesis of AgNPs has been progressively gaining acceptance due to its cost-effectiveness and energy-efficient nature.

    OBJECTIVE: In the current study, aqueous extract of Thymus vulgaris (T. vulgaris) was used to synthesize the AgNPs using green synthesis techniques followed by checking the effectiveness and various biological activities of these AgNPs.

    METHODS: At first, the plant samples were proceeded for extraction of aqueous extracts followed by chromatography studies to measure the phenolics and flavonoids. The synthesis and characterization of AgNPs were done using green synthesis techniques and were confirmed using Fourier transform infra-red (FT-IR) spectroscopy, UV-visible spectroscopy, scanning electron microscope (SEM), zeta potential, zeta sizer and X-Ray diffraction (XRD) analysis. After confirmation of synthesized AgNPs, various biological activities were checked.

    RESULTS: The chromatography analysis detected nine compounds accounting for 100% of the total amount of plant constituents. The FT-IR, UV-vis spectra, SEM, zeta potential, zeta sizer and XRD analysis confirmed the synthesis of AgNPs and the variety of chemical components present on the surface of synthesized AgNPs in the plant extract. The antioxidant activity of AgNPs showed 92% inhibition at the concentration of at 1000 µg/mL. A greater inhibitory effect in anti-diabetic analysis was observed with synthesized AgNPs as compared to the standard AgNPs. The hemolytic activity was low, but despite low concentrations of hemolysis activity, AgNPs proved not to be toxic or biocompatible. The anti-inflammatory activity of AgNPs was observed by in-vitro and in-vivo approaches in range at various concentrations, while maximum inhibition occurs at 1000 µg (77.31%).

    CONCLUSION: Our data showed that the potential biological activities of the bioactive constituents of T. vulgaris can be enhanced through green synthesis of AgNPs from T. vulgaris aqueous extracts. In addition, the current study depicted that AgNPs have good potential to cure different ailments as biogenic nano-medicine.

    Matched MeSH terms: Silver/pharmacology
  19. Aliyu IA, Kumurya AS, Bala JA, Yahaya H, Saidu H
    Rev Med Virol, 2021 Sep;31(5):1-9.
    PMID: 33314425 DOI: 10.1002/rmv.2202
    Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
    Matched MeSH terms: Antiviral Agents/pharmacology*
  20. Kong ZX, N Karunakaran R, Abdul Jabar K, Ponnampalavanar S, Chong CW, Teh CSJ
    PeerJ, 2022;10:e12830.
    PMID: 35223201 DOI: 10.7717/peerj.12830
    BACKGROUND: Carbapenem resistant Enterobacteriaceae (CRE) has rapidly disseminated worldwide and has become a global threat to the healthcare system due to its resistance towards "last line" antibiotics. This study aimed to investigate the prevalence of CRE and the resistance mechanism as well as the risk factors associated with in-hospital mortality.

    METHODS: A total of 168 CRE strains isolated from a tertiary teaching hospital from 2014-2015 were included in this study. The presence of carbapenemase genes and minimum inhibitory concentration of imipenem, meropenem and colistin were investigated. All carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) strains were characterised by PFGE. The risk factors of patients infected by CRE associated with in-hospital mortality were determined statistically.

    RESULTS: The predominant CRE species isolated was K. pneumoniae. The carbapenemases detected were blaOXA-48, blaOXA-232, blaVIM and blaNDM of which blaOXA-48 was the predominant carbapenemase detected among 168 CRE strains. A total of 40 CRE strains harboured two different carbapenemase genes. A total of seven clusters and 48 pulsotypes were identified among 140 CRKp strains. A predominant pulsotype responsible for the transmission from 2014 to 2015 was identified. Univariate statistical analysis identified that the period between CRE isolation and start of appropriate therapy of more than 3 days was statistically associated with in-hospital mortality.

    Matched MeSH terms: Carbapenems/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links