Displaying publications 901 - 920 of 3987 in total

Abstract:
Sort:
  1. Mohajeri S, Aziz HA, Zahed MA, Mohajeri L, Bashir MJ, Aziz SQ, et al.
    Water Sci Technol, 2011;64(8):1652-60.
    PMID: 22335108
    Landfill leachate is one of the most recalcitrant wastes for biotreatment and can be considered a potential source of contamination to surface and groundwater ecosystems. In the present study, Fenton oxidation was employed for degradation of stabilized landfill leachate. Response surface methodology was applied to analyze, model and optimize the process parameters, i.e. pH and reaction time as well as the initial concentrations of hydrogen peroxide and ferrous ion. Analysis of variance showed that good coefficients of determination were obtained (R2 > 0.99), thus ensuring satisfactory agreement of the second-order regression model with the experimental data. The results indicated that, pH and its quadratic effects were the main factors influencing Fenton oxidation. Furthermore, antagonistic effects between pH and other variables were observed. The optimum H2O2 concentration, Fe(II) concentration, pH and reaction time were 0.033 mol/L, 0.011 mol/L, 3 and 145 min, respectively, with 58.3% COD, 79.0% color and 82.1% iron removals.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods
  2. Azlan A, Khoo HE, Idris MA, Ismail A, Razman MR
    ScientificWorldJournal, 2012;2012:403574.
    PMID: 22649292 DOI: 10.1100/2012/403574
    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
    Matched MeSH terms: Water Supply/standards*; Drinking Water/chemistry*
  3. Chang SH, Teng TT, Ismail N
    J Environ Manage, 2011 Oct;92(10):2580-5.
    PMID: 21700383 DOI: 10.1016/j.jenvman.2011.05.025
    This study aimed to identify the significant factors that give large effects on the efficiency of Cu(II) extraction from aqueous solutions by soybean oil-based organic solvents using fractional factorial design. Six factors (mixing time (t), di-2-ethylhexylphosphoric acid concentration ([D2EHPA]), organic to aqueous phase ratio (O:A), sodium sulfate concentration ([Na(2)SO(4)]), equilibrium pH (pH(eq)) and tributylphosphate concentration ([TBP])) affecting the percentage extraction (%E) of Cu(II) were investigated. A 2(6-1) fractional factorial design was applied and the results were analyzed statistically. The results show that only [D2EHPA], pH(eq) and their second-order interaction ([D2EHPA] × pH(eq)) influenced the %E significantly. Regression models for %E were developed and the adequacy of the reduced model was examined. The results of this study indicate that fractional factorial design is a useful tool for screening a large number of variables and reducing the number of experiments.
    Matched MeSH terms: Water/chemistry*; Water Purification*
  4. Al-Hamadani YA, Yusoff MS, Umar M, Bashir MJ, Adlan MN
    J Hazard Mater, 2011 Jun 15;190(1-3):582-7.
    PMID: 21507572 DOI: 10.1016/j.jhazmat.2011.03.087
    Landfill leachate is a heavily polluted and a likely hazardous liquid that is produced as a result of water infiltration through solid wastes generated industrially and domestically. This study investigates the potential of using psyllium husk as coagulant and coagulant aid for the treatment of landfill leachate. Psyllium husk has been tested as primary coagulant and as coagulant aid with poly-aluminum chloride (PACl) and aluminum sulfate (alum). As primary coagulant, the optimum dosage and pH for PACl were 7.2 and 7.5 g/L, respectively, with removal efficiencies of 55, 80 and 95% for COD, color and TSS, respectively. For alum, the optimum conditions were 11 g/L alum dosage and pH 6.5 with removal efficiencies of 58, 79 and 78% for COD, color and TSS, respectively. The maximum removal efficiencies of COD, color and TSS were 64, 90 and 96%, respectively, when psyllium husk was used as coagulant aid with PACl. Based on the results, psyllium husk was found to be more effective as coagulant aid with PACl in the removal of COD, color and TSS as compared to alum. Zeta potential test was carried out for leachate, PACl, alum and psyllium husk before and after running the jar test to enhance the results of the jar test experiments.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/methods
  5. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ
    J Hazard Mater, 2011 May 15;189(1-2):404-13.
    PMID: 21420786 DOI: 10.1016/j.jhazmat.2011.02.052
    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/methods*
  6. Al-Odaini NA, Zakaria MP, Zali MA, Juahir H, Yaziz MI, Surif S
    Environ Monit Assess, 2012 Nov;184(11):6735-48.
    PMID: 22193630 DOI: 10.1007/s10661-011-2454-3
    The growing interest in the environmental occurrence of veterinary and human pharmaceuticals is essentially due to their possible health implications to humans and ecosystem. This study assesses the occurrence of human pharmaceuticals in a Malaysian tropical aquatic environment taking a chemometric approach using cluster analysis, discriminant analysis and principal component analysis. Water samples were collected from seven sampling stations along the heavily populated Langat River basin on the west coast of peninsular Malaysia and its main tributaries. Water samples were extracted using solid-phase extraction and analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for 18 pharmaceuticals and one metabolite, which cover a range of six therapeutic classes widely consumed in Malaysia. Cluster analysis was applied to group both pharmaceutical pollutants and sampling stations. Cluster analysis successfully clustered sampling stations and pollutants into three major clusters. Discriminant analysis was applied to identify those pollutants which had a significant impact in the definition of clusters. Finally, principal component analysis using a three-component model determined the constitution and data variance explained by each of the three main principal components.
    Matched MeSH terms: Fresh Water/chemistry*; Water Pollutants, Chemical/analysis*
  7. Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA
    Talanta, 2011 Dec 15;87:230-4.
    PMID: 22099672 DOI: 10.1016/j.talanta.2011.10.002
    A new cobalt(II) ion selective electrode based on palladium(II) dichloro acetylthiophene fenchone azine(I) has been developed. The best membrane composition is found to be 10:60:10:21.1 (I)/PVC/NaTPB/DOP (w/w). The electrode exhibits a Nerstian response in the range of 1.0 × 10(-1)-1.0 × 10(-6)M with a detection limit and slope of 8.0 × 10(-7)M and 29.6 ± 0.2 mV per decade respectively. The response time is within the range of 20-25s and can be used for a period of up to 4 months. The electrode developed reveals good selectivity for cobalt(II) and could be used in pH range of 3-7. The electrode has been successfully used in the determination of cobalt(II) in water samples.
    Matched MeSH terms: Water/analysis; Water Pollutants, Chemical/analysis*
  8. Haron MJ, Tiansin M, Ibrahim NA, Kassim A, Wan Yunus WM, Talebi SM
    Water Sci Technol, 2011;63(8):1788-93.
    PMID: 21866782
    This paper describes the sorption of Pb(ll) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(ll) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g-1 at 25 degrees C. The sorption process was exothermic, as shown by the negative value of enthalpy change, Delta H0. The free energy change (DeltaG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(ll) sorption followed a second order kinetic model.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry; Water Purification/methods
  9. Muhammad BG, Jaafar MS, Azhar AR, Akpa TC
    Radiat Prot Dosimetry, 2012 Apr;149(3):340-6.
    PMID: 21642647 DOI: 10.1093/rpd/ncr230
    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.
    Matched MeSH terms: Water Pollutants, Radioactive/analysis*; Drinking Water/analysis*
  10. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*
  11. Sapari P, Ismail BS
    Environ Monit Assess, 2012 Oct;184(10):6347-56.
    PMID: 22089624 DOI: 10.1007/s10661-011-2424-9
    The purpose of this study was to investigate the potential risk of pretilachlor, thiobencarb, and propanil pollutants in the water system of the rice fields of the Muda area. The study included two areas that used different irrigation systems namely non-recycled (N-RCL) and recycled (RCL) water. Regular water sampling was carried out at the drainage canals during the weeding period from September to October 2006 in the main season of 2006/2007 and April-May 2007 in off season of 2007. The herbicides were extracted by the solid-phase extraction method and identified using a GC-ECD. Results showed that the procedure for identification of the three herbicides was acceptable based on the recovery test values, which ranged from 84.1% to 96.9%. A wide distribution pattern where more than 79% of the water samples contained the herbicide pollutants was observed at both the areas where N-RCL and RCL water was supplied for the two seasons. During September to October 2006, high weedicide residue concentration was observed at the N-RCL area and it ranged from 0.05 to 1.00 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. In the case of the area with RCL water, the weedicide residue ranged from 1 to 5 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. The highest residue level reached was 25-50, 50-100, and 100-200 μg/L for pretilachlor, propanil, and thiobencarb, respectively. During April to May 2007, high residue concentration frequently occurred at the area supplied with N-RCL irrigation water and it ranged from 0.05 to 1.00, 10 to 25, and 25 to 50 μg/L for pretilachlor, propanil, and thiobencarb, respectively. The highest residue level reached was 25-50 μg/L for pretilachlor and 100-200 μg/L for propanil and thiobencarb. There was an accelerated increase in the concentration of the herbicide residues, with the maximum levels reached at the early period of weedicide application, followed by a sharp decrease after the rice fields were completely covered with the rice crop. During the main season of 2006/2007, the concentration of propanil residue gradually rose, although that of the other herbicides declined.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Pollution, Chemical/statistics & numerical data
  12. Jalil AA, Triwahyono S, Adam SH, Rahim ND, Aziz MA, Hairom NH, et al.
    J Hazard Mater, 2010 Sep 15;181(1-3):755-62.
    PMID: 20538408 DOI: 10.1016/j.jhazmat.2010.05.078
    In this study, calcined Lapindo volcanic mud (LVM) was used as an adsorbent to remove an anionic dye, methyl orange (MO), from an aqueous solution by the batch adsorption technique. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The adsorption kinetics and equilibrium isotherms of the LVM were studied using pseudo-first-order and -second-order kinetic equations, as well as the Freundlich and Langmuir models. The experimental data obtained with LVM fits best to the Langmuir isotherm model and exhibited a maximum adsorption capacity (q(max)) of 333.3 mg g(-1); the data followed the second-order equation. The intraparticle diffusion studies revealed that the adsorption rates were not controlled only by the diffusion step. The thermodynamic parameters, such as the changes in enthalpy, entropy, and Gibbs free energy, showed that the adsorption is endothermic, random and spontaneous at high temperature. The results indicate that LVM adsorbs MO efficiently and could be utilized as a low-cost alternative adsorbent for the removal of anionic dyes in wastewater treatment.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/methods*
  13. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2010 Dec;81(11):1446-53.
    PMID: 20875662 DOI: 10.1016/j.chemosphere.2010.09.004
    This study investigated the reaction kinetics and degradation mechanism of parabens (methylparaben, ethylparaben, propylparaben and butylparaben) during ozonation. Experiments were performed at pH 2, 6 and 12 to determine the rate constants for the reaction of protonated, undissociated and dissociated paraben with ozone. The rate constants for the reaction of ozone with dissociated parabens (3.3 × 10(9)-4.2 × 10(9)M(-1)s(-1)) were found to be 10(4) times higher than the undissociated parabens (2.5 × 10(5)-4.4 × 10(5)M(-1)s(-1)) and 10(7) times higher than with the protonated parabens (1.02 × 10(2)-1.38 × 10(2)M(-1)s(-1)). The second-order rate constants for the reaction between parabens with hydroxyl radicals were found to vary from 6.8 × 10(9) to 9.2 × 10(9)M(-1)s(-1). Characterization of degradation by-products (DBPs) formed during the ozonation of each selected parabens has been carried out using GCMS after silylation. Twenty DBPs formed during ozonation of selected parabens have been identified. Hydroxylation has been found to be the major reaction for the formation of the identified DBPs. Through the hydroxylation reaction, a variety of hydroxylated parabens was formed.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods
  14. Ngah WS, Fatinathan S
    J Environ Sci (China), 2010;22(3):338-46.
    PMID: 20614774
    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  15. Ibrahim MN, Ngah WS, Norliyana MS, Daud WR, Rafatullah M, Sulaiman O, et al.
    J Hazard Mater, 2010 Oct 15;182(1-3):377-85.
    PMID: 20619537 DOI: 10.1016/j.jhazmat.2010.06.044
    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.
    Matched MeSH terms: Water/chemistry; Water Pollutants, Chemical/isolation & purification*
  16. Fakhru'l-Razi A, Pendashteh A, Abidin ZZ, Abdullah LC, Biak DR, Madaeni SS
    Bioresour Technol, 2010 Sep;101(18):6942-9.
    PMID: 20434905 DOI: 10.1016/j.biortech.2010.04.005
    Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h. Operation results showed that for a HRT of 20 h, the combined process effluent chemical oxygen demand (COD), total organic carbon (TOC) and oil and grease (O&G) removal efficiencies were 90.9%, 92% and 91.5%, respectively. The MSBR effluent concentration levels met the required standard for oil well re-injection. The RO treatment reduced the salt and organic contents to acceptable levels for irrigation and different industrial re-use. Foulant biopsy demonstrated that the fouling on the membrane surface was mainly due to inorganic (salts) and organic (microorganisms and their products, hydrocarbon constituents) matters.
    Matched MeSH terms: Water Microbiology*; Water Purification/instrumentation*
  17. Hena S
    J Hazard Mater, 2010 Sep 15;181(1-3):474-9.
    PMID: 20627405 DOI: 10.1016/j.jhazmat.2010.05.037
    Adsorption capacity of Cr(VI) onto chitosan coated with poly 3-methyl thiophene synthesized chemically was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees), standard enthalpy (DeltaH degrees) and standard entropy (DeltaS degrees) were evaluated. Adsorption kinetics of Cr(VI) ions onto chitosan coated with poly 3-methyl thiophene were analyzed by pseudo-first-order and pseudo-second-order models. The Langmuir, Freundlich and Temkin isotherms were used to describe the adsorption equilibrium studies of chitosan coated with poly 3-methyl thiophene at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherms in the temperature range studied. The results show that the chitosan coated with poly 3-methyl thiophene can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported. In order to find out the possibility of regeneration and reuse of exhausted adsorbent, desorption studies were also performed.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/methods
  18. Shuhaimi-Othman M, Yakub N, Umirah NS, Abas A
    Toxicol Ind Health, 2011 Nov;27(10):879-86.
    PMID: 21402654 DOI: 10.1177/0748233711399318
    Fourth instars larvae of freshwater midge Chironomus javanus (Diptera, Chironomidae) were exposed for a 4-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al) and manganese (Mn) concentrations. Mortality was assessed and median lethal concentrations (LC(50)) were calculated. LC(50) increased with the decrease in mean exposure times, for all metals. LC(50)s for 96 hours for Cu, Cd, Zn, Pb, Ni, Fe, Al and Mn were 0.17, 0.06, 5.57, 0.72, 5.32, 0.62, 1.43 and 5.27 mg/L, respectively. Metals bioconcentration in C. javanus increases with exposure to increasing concentrations and Cd was the most toxic to C. javanus, followed by Cu, Fe, Pb, Al, Mn, Zn and Ni (Cd > Cu > Fe > Pb > Al > Mn > Zn > Ni). Comparison of LC(50) values for metals for this species with those for other freshwater midges reveals that C. javanus is equally or more sensitive to metals than most other tested dipteran.
    Matched MeSH terms: Fresh Water; Water Pollutants, Chemical/pharmacokinetics; Water Pollutants, Chemical/toxicity*
  19. Kamal MH, Azira WM, Kasmawati M, Haslizaidi Z, Saime WN
    J Environ Sci (China), 2010;22(2):248-56.
    PMID: 20397414
    Rubber leaf powder (an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(II) ions from aqueous solution was evaluated. The interactions between Pb(II) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDX). The effects of several important parameters which can affect adsorption capacity such as pH, adsorbent dosage, initial lead concentration and contact time were studied. The optimum pH range for lead adsorption was 4-5. Even at very low adsorbent dosage of 0.02 g, almost 100% of Pb(II) ions (23 mg/L) could be removed. The adsorption capacity was also dependent on lead concentration and contact time, and relatively a short period of time (60-90 min) was required to reach equilibrium. The equilibrium data were analyzed with Langmuir, Freundlich and Dubinin-Radushkevich isotherms. Based on Langmuir model, the maximum adsorption capacity of lead was 95.3 mg/g. Three kinetic models including pseudo first-order, pseudo second-order and Boyd were used to analyze the lead adsorption process, and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods*
  20. Al-Shami S, Rawi CS, Nor SA, Ahmad AH, Ali A
    Environ Entomol, 2010 Feb;39(1):210-22.
    PMID: 20146859 DOI: 10.1603/EN09109
    Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.
    Matched MeSH terms: Water Pollutants/adverse effects*; Water Pollution/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links