BIOLOGICAL SIGNIFICANCE: Laticauda colubrina (yellow-lipped sea krait) is a widely distributed, semi-aquatic venomous snake species. The venom proteome at the level of protein family is unsophisticated and consistent with its restricted prey selection. Nonetheless, the subproteomic findings revealed geographical variability of the venom for this widely distributed species. In contrast to two previous reports, the results for the Balinese L. colubrina venom showed that LNTX Neurotoxin a and Neurotoxin b were co-existent while the PLA2 lethal subtype (PLA-II) was undetected by means of LCMS/MS and by in vivo assay. This is an observable trait of L. colubrina considered divergent from specimens previously studied for the Philippines and the Solomon Islands. The stark geographical variation might be reflective of trophic adaptation following evolutionary arms race between the snake and the prey (eels) in different localities. The preferred trait would likely propagate and remain significant within the geographical population, since the strong behaviour of site fidelity in the species would have minimized gene flow between distant populations. Meanwhile, the in vivo neutralization study verified that the efficacy of the heterologous Sea Snake Antivenom (Australian product) is attributable to the cross-neutralization of SNTX and LNTX, two principal lethal toxins that made up the bulk of L. colubrina venom proteins. The findings also implied that L. colubrina, though could be evolutionarily more related to the terrestrial elapids, has evolved a much streamlined, neurotoxin- and PLA2-predominated venom arsenal, with major antigenicity shared among the true sea snakes and the Australo-Papuan elapids. The findings enrich our current understanding of the complexity of L. colubrina venom and the neutralizing spectrum of antivenom against the principal toxins from this unique elapid lineage.
METHODS: Consecutive biopsy-proven NAFLD patients (n = 191) and healthy controls (n = 188) were enrolled and genotyped for HLA-DQA1 and HLA-DQB1 alleles using the sequence-specific oligonucleotide-polymerase chain reaction method.
RESULTS: No association was found between the HLA alleles and NAFLD or NASH in a case-control setting. Nevertheless, among NAFLD patients, the frequency of HLA-DQB1*06 allele was significantly the lowest in NASH with significant fibrosis (10.4%) and approximately similar for NASH without significant fibrosis (22.9%) and NAFL (22.5%) (P = 0.004). It is noteworthy that the association remains significant after correction for multiple comparisons (Pc = 0.04). Multivariate analysis revealed that HLA-DQB1*06 allele is also associated with fibrosis score (P = 0.001); the result remains significant after correction for multiple comparisons.
CONCLUSION: These findings suggest that HLA-DQB1*06 is associated with lower fibrosis score in NAFLD patients.
METHODS: The rPvAMA1 protein was heterologous expressed using a tag-free Profinity eXact(TM) system and codon optimized BL21-Codon Plus (DE3)-RIL Escherichia coli strain and further refolded by dialysis for renaturation. Binding peptides toward refolded rPvAMA1 were panned using a Ph.D.-12 random phage display library.
RESULTS: The rPvAMA1 was successfully expressed and refolded with three phage-displayed dodecapeptides designated as PdV1 (DLTFTVNPLSKA), PdV2 (WHWSWWNPNQLT), and PdV3 (TSVSYINNRHNL) with affinity towards rPvAMA1 identified. All of them exhibited positive binding signal to rPvAMA1 in both direct phage assays, i.e., phage ELISA binding assay and Western blot binding assay.
DISCUSSION: Phage display technology enables the mapping of protein-protein interactions based on a simple principle that a library of phage particles displaying peptides is used and the phage clones that bind to the target protein are selected and identified. The binding sites of each selected peptides toward PvAMA1 (Protein Data Bank, PDB ID: 1W8K) were in silico predicted using CABS-dock web server. In this case, the binding peptides provide a valuable starting point for the development of peptidomimetic as antimalarial antagonists directed at PvAMA1.
RESULTS: Yeast two-hybrid (Y2H) experiment was used to identify the binding partners of surface antigens of T. gondii by using SAG2 as bait. Colony PCR was performed and positive clones were sent for sequencing to confirm their identity. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. The interplay between bait and prey was confirmed by β-galactosidase assay and co-immunoprecipitation experiment. We detected 20 clones interacting with SAG2 based on a series of the selection procedures. Following the autoactivation and toxicity tests, SAG2 was proven to be a suitable candidate as a bait. Thirteen clones were further examined by small scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens zinc finger protein and SAG2, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG2 protein was significant (Mann-Whitney U-test: Z = -1.964, P = 0.05).
CONCLUSIONS: Homo sapiens zinc finger protein was found to interact with SAG2. To improve the understanding of this prey protein's function, advanced investigations need to be carried out.
METHODS: In-depth individual interviews with thematic saturation were conducted between May and July 2018. The data was analyzed using thematic analysis.
RESULTS: Based on expert opinion, diagnosis of severe dengue is challenging as it depends on astute clinical interpretation of non-dengue-specific clinical and laboratory findings. A specific test that detects impending manifestation of severe dengue could 1) overcome failure in identifying severe disease for referral or admission, 2) facilitate timely and appropriate management of plasma leakage and bleeding, 3) overcome the lack of clinical expertise and laboratory diagnosis in rural health settings. The most important feature of any diagnostics for severe dengue is the point-of-care (POC) format where it can be performed at or near the bedside.
CONCLUSION: The development of diagnostics to detect impending severe dengue is warranted to reduce the morbidity and mortality rates of dengue infection and it should be prioritized.
METHODS: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH.
RESULTS: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/µL (IQR 247-5,565/µL). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First Response® and CareStart™ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocredit™). For parasite counts ≥200/µL, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocredit™ and two CareStart™ RDTs.For cultured P. knowlesi, CareStart™ PAN demonstrated the lowest LoD at 25 parasites/µL; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/µL. Pv-pLDH LoD for P. knowlesi was 49 parasites/µL. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels.
CONCLUSION: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria.
PATIENTS AND METHODS: A retrospective study was conducted based on incident lung cancer cases diagnosed between 2017 and 2019 in Lampang (Thailand), Penang (Malaysia), Singapore and Yogyakarta (Indonesia). Cases (n = 3413) were defined using the International Classification of Diseases for Oncology third edition. In Singapore, a clinical series obtained from the National Cancer Centre was used to identify patients, while corresponding population-based cancer registries were used elsewhere. Tumor and clinical information were abstracted by chart review according to a predefined study protocol. Molecular testing of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangement, ROS1 gene rearrangement and BRAF V600 mutation was recorded.
RESULTS: Among 2962 cases with a specified pathological diagnosis (86.8%), most patients had non-squamous NSCLC (75.8%). For cases with staging information (92.1%), the majority presented with metastatic disease (71.3%). Overall, molecular testing rates in the 1528 patients with stage IV non-squamous NSCLC were 67.0% for EGFR, 42.3% for ALK, 39.1% for ROS1, 7.8% for BRAF and 36.1% for PD-L1. Among these patients, first-line systemic treatment included chemotherapy (25.9%), targeted therapy (35.6%) and immunotherapy (5.9%), with 31% of patients having no record of antitumor treatment. Molecular testing and the proportion of patients receiving treatment were highly heterogenous between the regions.
CONCLUSIONS: This first analysis of data from a clinically annotated registry for lung cancer from four settings in Southeast Asia has demonstrated the feasibility of integrating clinical data within population-based cancer registries. Our study results identify areas where further development could improve patient access to optimal treatment.
Methods: A cross-sectional study was used. Totally, 427 samples of dissimilar Thai-Muslim healthy blood donors living in three southern border provinces were selected via simple random sampling (aged 17-65 years old) and donors found to be positive for infectious markers were excluded. All samples were analysed for JK*A and JK*B alleles using PCR-SSP. The Pearson's chi-squared and Fisher exact tests were used to compare the JK frequencies among southern Thai-Muslim with those among other populations previously reported.
Results: A total of 427 donors-315 males and 112 females, with a median age of 29 years (interquartile range: 18 years)-were analysed. A JK*A/JK*B genotype was the most common, and the JK*A and JK*B allele frequencies among the southern Thai-Muslims were 55.2% and 44.8%, respectively. Their frequencies significantly differed from those of the central Thai, Korean, Japanese, Brazilian-Japanese, Chinese, Filipino, Africans and American Natives populations (P < 0.05). Predicted JK phenotypes were compared with different groups of Malaysians. The Jk(a+b+) phenotype frequency among southern Thai-Muslims was significantly higher than that of Malaysian Malays and Indians (P < 0.05).
Conclusions: The JK*A and JK*B allele frequencies in a southern Thai-Muslim population were determined, which can be applied not only to solve problems in transfusion medicine but also to provide tools for genetic anthropology and population studies.
METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade.
CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective.