Displaying publications 81 - 100 of 106 in total

Abstract:
Sort:
  1. Basirun AA, Ahmad SA, Sabullah MK, Yasid NA, Daud HM, Khalid A, et al.
    3 Biotech, 2019 Feb;9(2):64.
    PMID: 30729088 DOI: 10.1007/s13205-019-1592-0
    The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.
  2. Arif NM, Ahmad SA, Syed MA, Shukor MY
    J Basic Microbiol, 2013 Jan;53(1):9-19.
    PMID: 22581645 DOI: 10.1002/jobm.201100120
    In this work, we report on the isolation of a phenol-degrading Rhodococcus sp. with a high tolerance towards phenol. The isolate was identified as Rhodococcus sp. strain AQ5NOL 2, based on 16S rDNA analysis. The strain degraded phenol using the meta pathway, a trait shared by many phenol-degraders. In addition to phenol biodegradation, the strain was also capable of degrading diesel. Strain AQ5NOL 2 exhibited a broad optimum temperature for growth on phenol at between 20 °C and 35 °C. The best nitrogen sources were ammonium sulphate, glycine or phenylalanine, followed by proline, nitrate, leucine, and alanine (in decreasing efficiency). Strain AQ5NOL 2 showed a high tolerance and degradation capacity of phenol, for it was able to register growth in the presence of 2000 mg l(-1) phenol. The growth of this strain on phenol as sole carbon and energy source were modeled using Haldane kinetics with a maximal specific growth rate (μ(max)) of 0.1102 hr(-1), a half-saturation constant (K(s) ) of 99.03 mg l(-1) or 1.05 mmol l(-1), and a substrate inhibition constant (K(i)) of 354 mg l(-1) or 3.76 mmol l(-1). Aside from phenol, the strain could utilize diesel, 2,4-dinitrophenol and ρ-cresol as carbon sources for growth. Strain AQ5NOL 2 exhibited inhibition of phenol degradation by Zn(2+), Cu(2+), Cr(6+), Ag(+) and Hg(2+) at 1 mg l(-1).
  3. Mansur R, Gusmanizar N, Roslan MA, Ahmad SA, Shukor MY
    Trop Life Sci Res, 2017 Jan;28(1):69-90.
    PMID: 28228917 MyJurnal DOI: 10.21315/tlsr2017.28.1.5
    A molybdenum reducing bacterium with the novel ability to decolorise the azo dye Metanil Yellow is reported. Optimal conditions for molybdenum reduction were pH 6.3 and at 34°C. Glucose was the best electron donor. Another requirement includes a narrow phosphate concentration between 2.5 and 7.5 mM. A time profile of Mo-blue production shows a lag period of approximately 12 hours, a maximum amount of Mo-blue produced at a molybdate concentration of 20 mM, and a peak production at 52 h of incubation. The heavy metals mercury, silver, copper and chromium inhibited reduction by 91.9, 82.7, 45.5 and 17.4%, respectively. A complete decolourisation of the dye Metanil Yellow at 100 and 150 mg/L occurred at day three and day six of incubations, respectively. Higher concentrations show partial degradation, with an approximately 20% decolourisation observed at 400 mg/L. The bacterium is partially identified based on biochemical analysis as Bacillus sp. strain Neni-10. The absorption spectrum of the Mo-blue suggested the compound is a reduced phosphomolybdate. The isolation of this bacterium, which shows heavy metal reduction and dye-decolorising ability, is sought after, particularly for bioremediation.
  4. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
  5. Karamba KI, Ahmad SA, Zulkharnain A, Yasid NA, Ibrahim S, Shukor MY
    3 Biotech, 2018 Jan;8(1):11.
    PMID: 29259886 DOI: 10.1007/s13205-017-1025-x
    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination (R2) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration (Sm) of 713.4 and empirical constant (n) of 1.516. Tessier and Aiba fitted the experimental data with a R2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
  6. Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY
    3 Biotech, 2018 Feb;8(2):117.
    PMID: 29430378 DOI: 10.1007/s13205-018-1141-2
    In this novel study, we report on the use of two molybdenum-reducing bacteria with the ability to utilise the herbicide glyphosate as the phosphorus source. The bacteria reduced sodium molybdate to molybdenum blue (Mo-blue), a colloidal and insoluble product, which is less toxic. The characterisation of the molybdenum-reducing bacteria was carried out using resting cells immersed in low-phosphate molybdenum media. Two glyphosate-degrading bacteria, namelyBurkholderia vietnamiensisAQ5-12 andBurkholderiasp. AQ5-13, were able to use glyphosate as a phosphorous source to support molybdenum reduction to Mo-blue. The bacteria optimally reduced molybdenum between the pHs of 6.25 and 8. The optimum concentrations of molybdate for strainBurkholderia vietnamiensis strainAQ5-12 was observed to be between 40 and 60 mM, while forBurkholderiasp. AQ5-13, the optimum molybdate concentration occurred between 40 and 50 mM. Furthermore, 5 mM of phosphate was seen as the optimum concentration supporting molybdenum reduction for both bacteria. The optimum temperature aiding Mo-blue formation ranged from 30 to 40 °C forBurkholderia vietnamiensis strainAQ5-12, whereas forBurkholderiasp. AQ5-13, the range was from 35 to 40 °C. Glucose was the best electron donor for supporting molybdate reduction, followed by sucrose, fructose and galactose for both strains. Ammonium sulphate was the best nitrogen source in supporting molybdenum reduction. Interestingly, increasing the glyphosate concentrations beyond 100 and 300 ppm forBurkholderia vietnamiensis strainAQ5-12 andBurkholderiasp. AQ5-13, respectively, significantly inhibited molybdenum reduction. The ability of these bacteria to reduce molybdenum while degrading glyphosate is a useful process for the bioremediation of both toxicants.
  7. Padrilah SN, Ahmad SA, Yasid NA, Sabullah MK, Daud HM, Khalid A, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(28):22510-22523.
    PMID: 28804856 DOI: 10.1007/s11356-017-9923-3
    The release of pollutants, especially heavy metals, into the aquatic environment is known to have detrimental effects on such an environment and on living organisms including humans when those pollutants are allowed to enter the food chain. The aim of this study is to analyse the damage to Clarias gariepinus' liver caused by exposure to different concentrations of copper. In the present study, samples of C. gariepinus were exposed to sub-lethal copper sulphate (CuSO4) concentrations (from 0.2 to 20.0 mg/L) for 96 h. Physiological and behavioural alterations were observed with respect to their swimming pattern, mucus secretion and skin colour. Mortality was also observed at high concentrations of copper. Histopathological alterations of the liver were analysed under light, transmission and scanning electron microscopies. The liver of the untreated group showed normal tissue structures, while histopathological abnormalities were observed in the treated fish under light and electron microscopes with increased copper concentrations. Histopathological abnormalities include necrosis, melanomacrophage, hepatic fibrosis and congested blood vessels. In addition, the enzyme activity of liver cholinesterase (ChE) was also found to be affected by copper sulphate, as 100% of cholinesterase activity was inhibited at 20.0 mg/L. Thus, liver enzyme activity and histopathological changes are proven to be alternative sources for biomarkers of metal toxicity.
  8. Baskaran G, Salvamani S, Azlan A, Ahmad SA, Yeap SK, Shukor MY
    PMID: 26697097 DOI: 10.1155/2015/751714
    Hypercholesterolemia is the major risk factor that leads to atherosclerosis. Nowadays, alternative treatment using medicinal plants gained much attention since the usage of statins leads to adverse health effects, especially liver and muscle toxicity. This study was designed to investigate the hypocholesterolemic and antiatherosclerotic effects of Basella alba (B. alba) using hypercholesterolemia-induced rabbits. Twenty New Zealand white rabbits were divided into 5 groups and fed with varying diets: normal diet, 2% high cholesterol diet (HCD), 2% HCD + 10 mg/kg simvastatin, 2% HCD + 100 mg/kg B. alba extract, and 2% HCD + 200 mg/kg B. alba extract, respectively. The treatment with B. alba extract significantly lowered the levels of total cholesterol, LDL, and triglycerides and increased HDL and antioxidant enzymes (SOD and GPx) levels. The elevated levels of liver enzymes (AST and ALT) and creatine kinase were noted in hypercholesterolemic and statin treated groups indicating liver and muscle injuries. Treatment with B. alba extract also significantly suppressed the aortic plaque formation and reduced the intima: media ratio as observed in simvastatin-treated group. This is the first in vivo study on B. alba that suggests its potential as an alternative therapeutic agent for hypercholesterolemia and atherosclerosis.
  9. Othman AR, Bakar NA, Halmi MI, Johari WL, Ahmad SA, Jirangon H, et al.
    Biomed Res Int, 2013;2013:371058.
    PMID: 24369531 DOI: 10.1155/2013/371058
    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
  10. Allamin IA, Halmi MIE, Yasid NA, Ahmad SA, Abdullah SRS, Shukor Y
    Sci Rep, 2020 Mar 05;10(1):4094.
    PMID: 32139706 DOI: 10.1038/s41598-020-60668-1
    Most components of petroleum oily sludge (POS) are toxic, mutagenic and cancer-causing. Often bioremediation using microorganisms is hindered by the toxicity of POS. Under this circumstance, phytoremediation is the main option as it can overcome the toxicity of POS. Cajanus cajan a legume plant, was evaluated as a phyto-remediating agent for petroleum oily sludge-spiked soil. Culture dependent and independent methods were used to determine the rhizosphere microorganisms' composition. Degradation rates were estimated gravimetrically. The population of total heterotrophic bacteria (THRB) was significantly higher in the uncontaminated soil compared to the contaminated rhizosphere soil with C. cajan, but the population of hydrocarbon-utilizing bacteria (HUB) was higher in the contaminated rhizosphere soil. The results show that for 1 to 3% oily sludge concentrations, an increase in microbial counts for all treatments from day 0 to 90 d was observed with the contaminated rhizosphere CR showing the highest significant increase (p  
  11. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, Dhanoa A, Syed Hassan S
    Virol J, 2019 02 27;16(1):26.
    PMID: 30813954 DOI: 10.1186/s12985-019-1127-7
    BACKGROUND: Dengue continues to be a major international public health concern. Despite that, there is no clinically approved antiviral for treatment of dengue virus (DENV) infections. In this study, geraniin extracted from the rind of Nephelium lappaceum was shown to inhibit the replication of DENV-2 in both in vitro and in vivo experiments.

    METHODS: The effect of geraniin on DENV-2 RNA synthesis in infected Vero cells was tested using quantitative RT-PCR. The in vivo efficacy of geraniin in inhibiting DENV-2 infection was then tested using BALB/c mice with geraniin administered at three different times. The differences in spleen to body weight ratio, DENV-2 RNA load and liver damage between the three treatment groups as compared to DENV-2 infected mice without geraniin administration were determined on day eight post-infection.

    RESULTS: Quantitative RT-PCR confirmed the decrease in viral RNA synthesis of infected Vero cells when treated with geraniin. Geraniin seemed to provide a protective effect on infected BALB/c mice liver when given at 24 h pre- and 24 h post-infection as liver damage was observed to be very mild even though a significant reduction of DENV-2 RNA load in serum was not observed in these two treatment groups. However, when administered at 72 h post-infection, severe liver damage in the form of necrosis and haemorrhage had prevailed despite a substantial reduction of DENV-2 RNA load in serum.

    CONCLUSIONS: Geraniin was found to be effective in reducing DENV-2 RNA load when administered at 72 h post-infection while earlier administration could prevent severe liver damage caused by DENV-2 infection. These results provide evidence that geraniin is a potential candidate for the development of anti-dengue drug.

  12. Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S
    Virol J, 2017 11 21;14(1):229.
    PMID: 29162124 DOI: 10.1186/s12985-017-0895-1
    BACKGROUND: The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated.

    METHODS: Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay.

    RESULTS: Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity.

    CONCLUSIONS: Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.

  13. Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MY, Syed MA
    World J Microbiol Biotechnol, 2012 Jan;28(1):347-52.
    PMID: 22806810 DOI: 10.1007/s11274-011-0826-z
    A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm(2)) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l(-1), both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l(-1) phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l(-1). However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.
  14. Shukor MY, Ahmad SA, Nadzir MM, Abdullah MP, Shamaan NA, Syed MA
    J Appl Microbiol, 2010 Jun;108(6):2050-8.
    PMID: 19968732 DOI: 10.1111/j.1365-2672.2009.04604.x
    To isolate and characterize a potent molybdenum-reducing bacterium.
  15. Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA
    Biomed Res Int, 2013;2013:871941.
    PMID: 24381945 DOI: 10.1155/2013/871941
    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.
  16. Dahalan FA, Abdullah N, Yuzir A, Olsson G, Salmiati, Hamdzah M, et al.
    Bioresour Technol, 2015 Apr;181:291-6.
    PMID: 25661308 DOI: 10.1016/j.biortech.2015.01.062
    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme.
  17. Fernandez IG, Ahmad SA, Wada C
    Sensors (Basel), 2020 Aug 19;20(17).
    PMID: 32825029 DOI: 10.3390/s20174675
    Falls are among the main causes of injuries in elderly individuals. Balance and mobility impairment are major indicators of fall risk in this group. The objective of this research was to develop a fall risk feedback system that operates in real time using an inertial sensor-based instrumented cane. Based on inertial sensor data, the proposed system estimates the kinematics (contact phase and orientation) of the cane. First, the contact phase of the cane was estimated by a convolutional neural network. Next, various algorithms for the cane orientation estimation were compared and validated using an optical motion capture system. The proposed cane contact phase prediction model achieved higher accuracy than the previous models. In the cane orientation estimation, the Madgwick filter yielded the best results overall. Finally, the proposed system was able to estimate both the contact phase and orientation in real time in a single-board computer.
  18. Jafar A, Dollah R, Dambul R, Mittal P, Ahmad SA, Sakke N, et al.
    Int J Environ Res Public Health, 2022 Sep 05;19(17).
    PMID: 36078822 DOI: 10.3390/ijerph191711108
    Amid the outbreak of the COVID-19 pandemic in the year 2020, educational platforms have been forced to change and adapt from conventional physical learning to virtual learning. Nearly all higher learning institutions worldwide are forced to follow the new educational setting through virtual platforms. Sabah is one of the poorest states in Malaysia with the poorest infrastructure, with the technology and communication facilities in the state remaining inept. With the changes in virtual platforms in all higher education institutions in Malaysia, higher learning institutions in Sabah are expected to follow the lead, despite the state lagging in its development. This has certainly impacted the overall productivity and performance of students in Sabah. Therefore, this study aims to explore the challenges of the implementation of virtual learning among students in Sabah. More specifically, this study seeks to identify vulnerable groups among students based on their geographical location. To achieve the objective of this study, a survey has been conducted on a total of 1,371 students in both private and public higher learning institutions in Sabah. The sample selection for this study was determined using a purposive sampling technique. Based on Principal Component Analysis (PCA), it was found that there are five challenges in virtual learning faced by students in higher learning institutions in Sabah. These are the unconducive learning environment (var(X) = 20.12%), the deterioration of physical health (var(X) = 13.40%), the decline of mental health (var(X) = 12.10%), the limited educational facilities (var(X) = 10.14%) and social isolation (var(X) = 7.47%). The K-Means Clustering analysis found that there are six student clusters in Sabah (Cluster A, B, C, D, E & F), each of which faces different challenges in participating in virtual learning. Based on the assessment of location, almost half of the total number of districts in Sabah are dominated by students from Cluster A (9 districts) and Cluster B (4 districts). More worryingly, both Cluster A and Cluster B are classified as highly vulnerable groups in relation to the implementation of virtual learning. The results of this study can be used by the local authorities and policymakers in Malaysia to improve the implementation of virtual learning in Sabah so that the education system can be more effective and systematic. Additionally, the improvement and empowerment of the learning environment are crucial to ensuring education is accessible and inclusive for all societies, in line with the fourth of the Sustainable Development Goals (SDG-4).
  19. Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, et al.
    Plants (Basel), 2021 Dec 06;10(12).
    PMID: 34961148 DOI: 10.3390/plants10122677
    One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
  20. Rani E, Mohshim SA, Ahmad MZ, Goodacre R, Alang Ahmad SA, Wong LS
    Polymers (Basel), 2019 Mar 25;11(3).
    PMID: 30960545 DOI: 10.3390/polym11030561
    There is an increasing demand for lithography methods to enable the fabrication of diagnostic devices for the biomedical and agri-food sectors. In this regard, scanning probe lithography methods have emerged as a possible approach for this purpose, as they are not only convenient, robust and accessible, but also enable the deposition of "soft" materials such as complex organic molecules and biomolecules. In this report, the use of polymer pen lithography for the fabrication of DNA oligonucleotide arrays is described, together with the application of the arrays for the sensitive and selective detection of Ganoderma boninense, a fungal pathogen of the oil palm. When used in a sandwich assay format with DNA-conjugated gold nanoparticles, this system is able to generate a visually observable result in the presence of the target DNA. This assay is able to detect as little as 30 ng of Ganoderma-derived DNA without any pre-amplification and without the need for specialist laboratory equipment or training.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links