Displaying publications 81 - 100 of 291 in total

Abstract:
Sort:
  1. Hardwick J, Taylor J, Mehta M, Satija S, Paudel KR, Hansbro PM, et al.
    Curr Pharm Des, 2021;27(1):2-14.
    PMID: 32723255 DOI: 10.2174/1381612826666200728151610
    Curcumin is a major curcuminoid present in turmeric. The compound is attributed to various therapeutic properties, which include anti-oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and neuroprotection. Due to its therapeutic potential, curcumin has been employed for centuries in treating different ailments. Curcumin has been investigated lately as a novel therapeutic agent in the treatment of cancer. However, the mechanisms by which curcumin exerts its cytotoxic effects on malignant cells are still not fully understood. One of the main limiting factors in the clinical use of curcumin is its poor bioavailability and rapid elimination. Advancements in drug delivery systems such as nanoparticle-based vesicular drug delivery platforms have improved several parameters, namely, drug bioavailability, solubility, stability, and controlled release properties. The use of curcumin-encapsulated niosomes to improve the physical and pharmacokinetic properties of curcumin is one such approach. This review provides an up-to-date summary of nanoparticle-based vesicular drug carriers and their therapeutic applications. Specifically, we focus on niosomes as novel drug delivery formulations and their potential in improving the delivery of challenging small molecules, including curcumin. Overall, the applications of such carriers will provide a new direction for novel pharmaceutical drug delivery, as well as for biotechnology, nutraceutical, and functional food industries.
  2. Mehta M, Dhanjal DS, Satija S, Wadhwa R, Paudel KR, Chellappan DK, et al.
    Curr Pharm Des, 2020;26(42):5380-5392.
    PMID: 33198611 DOI: 10.2174/1381612826999201116161143
    Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.
  3. Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, et al.
    Life Sci, 2021 Aug 01;278:119658.
    PMID: 34048809 DOI: 10.1016/j.lfs.2021.119658
    AIMS: Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages.

    MATERIALS AND METHODS: An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit.

    KEY FINDINGS: The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages.

    SIGNIFICANCE: MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.

  4. Prasher P, Sharma M, Chellappan DK, Gupta G, Jha NK, Singh SK, et al.
    Future Med Chem, 2021 07;13(13):1087-1090.
    PMID: 33947226 DOI: 10.4155/fmc-2021-0013
  5. Wong YH, Wong SH, Wong XT, Yi Yap Q, Yip KY, Wong LZ, et al.
    Panminerva Med, 2021 Oct 05.
    PMID: 34609116 DOI: 10.23736/S0031-0808.21.04285-3
    According to the International Diabetes Federation, the number of adults (age of 20-79) being diagnosed with Diabetes Mellitus (DM) have increased from 285 million in year 2009 to 463 million in year 2019 which comprises of 95% Type 2 DM patient (T2DM). Research have claimed that genetic predisposition could be one of the factors causing T2DM complications. In addition, T2DMcomplications cause an incremental risk to mortality. Therefore, this article aims to discuss some complications of T2DM in and their genetic association. The complications that are discussed in this article are diabetic nephropathy, diabetes induced cardiovascular disease, diabetic neuropathy, Diabetic Foot Ulcer (DFU) and Alzheimer's disease. According to the information obtained, genes associated with diabetic nephropathy (DN) are gene GABRR1 and ELMO1 that cause injury to glomerular. Replication of genes FRMD3, CARS and MYO16/IRS2 shown to have link with DN. The increase of gene THBS2, NGAL, PIP, TRAF6 polymorphism, ICAM-1 encoded for rs5498 polymorphism and C667T increase susceptibility towards DN in T2DM patient. Genes associated with cardiovascular diseases are Adiponectin gene (ACRP30) and Apolipoprotein E (APOE) polymorphism gene with ξ2 allele. Haptoglobin (Hp) 1-1 genotype and Mitochondria Superoxide Dismutase 2 (SOD2) plays a role in cardiovascular events. As for genes related to diabetic neuropathy, Janus Kinase (JAK), mutation of SCN9A and TRPA1 gene and destruction of miRNA contribute to pathogenesis of diabetic neuropathy among T2DM patients. Expression of cytokine IL-6, IL-10, miR-146a are found to cause diabetic neuropathy. Besides, A1a16Va1 gene polymorphism, an oxidative stress influence was found as one of the gene factors. Diabetic retinopathy (DR) is believed to have association with Monocyte Chemoattractant Protein-1 (MCP-1) and Insulin-like Growth Factor 1 (IGF1). Over-expression of gene ENPP1, IL-6 pro-inflammatory cytokine, ARHGAP22's protein rs3844492 polymorphism and TLR4 heterozygous genotype are contributing to significant pathophysiological process causing DR, while research found increases level of UCP1 gene protects retina cells from oxidative stress. Diabetic Foot Ulcer (DFU) is manifested by slowing in reepithelialisation of keratinocyte, persistence wound inflammation and healing impairment. Reepithelialisation disturbance was caused by E2F3 gene, reduction of Tacl gene encoded substance P causing persistence inflammation while expression of MMp-9 polymorphism contributes to healing impairment. A decrease in HIF-1a gene expression leads to increased risk of pathogenesis, while downregulation of TLR2 increases severity of wound in DFU patients. SNPs alleles has been shown to have significant association between the genetic dispositions of T2DM and Alzheimer's disease (AD). The progression of AD can be due to the change in DNA methylation of CLOCK gene, followed with worsening of AD by APOE4 gene due to dyslipidaemia condition in T2DM patients. Insulin resistance is also a factor that contributes to pathogenesis of AD.
  6. Gupta G, Singhvi G, Chellappan DK, Sharma S, Mishra A, Dahiya R, et al.
    Panminerva Med, 2018 Sep;60(3):109-116.
    PMID: 30176701 DOI: 10.23736/S0031-0808.18.03462-6
    Glioblastoma, also known as glioblastoma multiforme, is the most common and worldwide-spread cancer that begins within the brain. Glioblastomas represent 15% of brain tumors. The most common length of survival following diagnosis is 12 to 14 months with less than 3% to 5% of people surviving longer than five years. Without treatment, survival is typically 3 months. Among all receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in glioblastoma. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPAR. There has been interesting preliminary evidence suggesting that diabetic patients receiving PPARγ agonists, a group of anti-diabetics, thiazolidinedione drugs, have an increased median survival for glioblastoma. In this paper, the recent progresses in understanding the potential mechanism of PPARγ in glioblastoma are summarized.
  7. Rathore C, Rathbone MJ, Chellappan DK, Tambuwala MM, Pinto TJA, Dureja H, et al.
    Expert Opin Drug Deliv, 2020 04;17(4):479-494.
    PMID: 32077770 DOI: 10.1080/17425247.2020.1730808
    Introduction: Thymoquinone (TQ), 2-isopropyl-5-methylbenzo-1, 4-quinone, the main active constituent of Nigella sativa (NS) plant, has been proven to be of great therapeutic aid in various in vitro and in vivo conditions. Despite the promising therapeutic activities of TQ, this molecule is not yet in the clinical trials, restricted by its poor biopharmaceutical properties including photo-instability.Area covered: This review compiles the different types of polymeric and lipidic nanocarriers (NCs), encapsulating TQ for their improved oral bioavailability, and augmented in vitro and in vivo efficacy, evidenced on various pathologies. Furthermore, we provide a comprehensive overview of TQ in relation to its encapsulation approaches advancing the delivery and improving the efficacy of TQ.Expert opinion: TQ was first identified in the essential oil of Nigella sativa L. black seed. TQ has not been used in formulations because it is a highly hydrophobic drug having poor aqueous solubility. To deal with the poor physicochemical problems associated with TQ, various NCs encapsulating TQ have been tried in the past. Nevertheless, these NCs could be impending in bringing forth this potential molecule to clinical reality. This will also be beneficial for a large research community including pharmaceutical & biological sciences and translational researchers.
  8. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Aug;197:111531.
    PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531
    Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
  9. Shrivastava G, Bakshi HA, Aljabali AA, Mishra V, Hakkim FL, Charbe NB, et al.
    Curr Drug Deliv, 2020;17(2):101-111.
    PMID: 31906837 DOI: 10.2174/1567201817666200106104332
    BACKGROUND: Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression.

    OBJECTIVE: This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed.

    METHODS: Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers.

    CONCLUSION: The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.

  10. Yong YK, Wen NCM, Yeo GEC, Chew ZX, Chan LL, Md Zain NZ, et al.
    PMID: 34574752 DOI: 10.3390/ijerph18189828
    Several bacterial species cause post-operative infections, which has been a critical health concern among hospital patients. Our study in this direction is a much-needed exploratory study that was carried out at the National Heart Institute (IJN) of Malaysia to examine the virulence properties of causative bacteria obtained from postoperative patients. The bacterial isolates and data were provided by the IJN. Antibiotic resistance gene patterns, and the ability to form biofilm were investigated for 127 isolates. Klebsiella pneumoniae (36.2%) was the most common isolate collected, which was followed by Pseudomonas aeruginosa (26%), Staphylococcus aureus (23.6%), Streptococcus spp. (8.7%) and Acinetobacter baumannii (5.5%). There were 49 isolates that showed the presence of multidrug resistance genes. The mecA gene was surprisingly found in methicillin-susceptible S. aureus (MSSA), which also carried the ermA gene from those erythromycin-susceptible strains. The phenotypic antibiotic resistance profiles varied greatly between isolates. Findings from the biofilm assay revealed that 44 of the 127 isolates demonstrated the ability to produce biofilms. Our findings provide insights into the possibility of some of these bacteria surviving under antibiotic stress, and some antibiotic resistance genes being silenced.
  11. Gupta G, Chellappan DK, Singh SK, Gupta PK, Kesari KK, Jha NK, et al.
    Nanomedicine (Lond), 2021 10;16(25):2243-2247.
    PMID: 34547920 DOI: 10.2217/nnm-2021-0254
  12. Chellappan DK, Dharwal V, Paudel KR, Jha NK, MacLoughlin R, Oliver BG, et al.
    Future Med Chem, 2021 08;13(15):1249-1251.
    PMID: 34184585 DOI: 10.4155/fmc-2021-0097
  13. Yap PK, Loo Xin GL, Tan YY, Chellian J, Gupta G, Liew YK, et al.
    J Pharm Pharmacol, 2019 Sep;71(9):1339-1352.
    PMID: 31144296 DOI: 10.1111/jphp.13107
    OBJECTIVES: Antiretroviral agents (ARVs) have been the most promising line of therapy in the management of human immunodeficiency virus (HIV) infections. Some of these ARVs are used in the pre-exposure prophylaxis (PrEP) to suppress the transmission of HIV. Prophylaxis is primarily used in uninfected people, before exposure, to effectively prevent HIV infection. Several studies have shown that ART PrEP prevents HIV acquisition from sexual, blood and mother-to-child transmissions. However, there are also several challenges and limitations to PrEP. This review focuses on the current antiretroviral therapies used in PrEP.

    KEY FINDINGS: Among ARVs, the most common drugs employed from the class of entry inhibitors are maraviroc (MVC), which is a CCR5 receptor antagonist. Other entry inhibitors like emtricitabine (FTC) and tenofovir (TFV) are also used. Rilpivirine (RPV) and dapivirine (DPV) are the most common drugs employed from the Non-nucleoside reverse transcriptase inhibitor (NNRTIs) class, whereas, tenofovir disoproxil fumarate (TDF) is primarily used in the Nucleoside Reverse Transcriptase Inhibitor (NRTIs) class. Cabotegravir (CAB) is an analog of dolutegravir, and it is an integrase inhibitor. Some of these drugs are also used in combination with other drugs from the same class.

    SUMMARY: Some of the most common pre-exposure prophylactic strategies employed currently are the use of inhibitors, namely entry inhibitors, non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, integrase and protease inhibitors. In addition, we have also discussed on the adverse effects caused by ART in PrEP, pharmacoeconomics factors and the use of antiretroviral prophylaxis in serodiscordant couples.

  14. Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, et al.
    Nanomedicine, 2021 01;31:102303.
    PMID: 32980549 DOI: 10.1016/j.nano.2020.102303
    MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
  15. Khanuja HK, Awasthi R, Mehta M, Satija S, Aljabali AAA, Tambuwala MM, et al.
    Recent Pat Nanotechnol, 2021;15(4):351-366.
    PMID: 33357187 DOI: 10.2174/1872210514666201224103010
    BACKGROUND: Nanosuspensions are colloidal systems consisting of pure drug and stabilizers, without matrix or lyophilized into a solid matrix. Nanosuspensions improve the solubility of the drug both in the aqueous and organic phases. Nanosuspensions are also known as brick dust molecules, as they increase the dissolution of a system and improve absorption.

    METHODS: Extensive information related to nanosuspensions and its associated patents were collected using Pub Med and Google Scholar.

    RESULTS: Over the last decade nanosuspensions have attracted tremendous interest in pharmaceutical research. It provides unique features including, improved solubility, high drug loading capacity, and passive targeting. These particles are cost-effective, simple, and have lesser side effects with minimal dose requirements. However, the stability of nanosuspensions still warrants attention.

    CONCLUSION: Nanosuspensions play a vital role in handling the numerous drug entities with difficult physico-chemical characteristics such as solubility and can further aid with a range of routes that include nasal, transdermal, ocular, parenteral, pulmonary etc. This review highlights the relevance of nanosuspensions in achieving safe, effective and targeted drug delivery.

  16. Gupta G, Chellappan DK, Kikuchi IS, Pinto TJA, Pabreja K, Agrawal M, et al.
    J Environ Pathol Toxicol Oncol, 2017;36(2):113-119.
    PMID: 29199592 DOI: 10.1615/JEnvironPatholToxicolOncol.2017019457
    Paracetamol (PCM) has an acceptable safety profile when used at prescribed doses. However, it is now understood that paracetamol can damage the kidneys when administered as an overdose. In addition, oxidative stress can play a major role in causing nephrotoxicity. This investigation studies the efficacy of moralbosteroid isolated from M. alba stem bark. Nephrotoxicity was induced with administration of paracetamol. Nephroprotection was studied using two doses of the extract. The experimental animals were divided into four groups (n = 6). Two groups served as positive and negative controls, respectively, and two received the test substances. All of the contents were orally administered. Significant reductions in nephrotoxicity and oxidative damages were observed in the treatment groups. There was a marked decrease in blood levels of urea, creatinine, and lipid peroxidation. Furthermore, it was found that glutathione levels in the blood increased dramatically after treatment. Histological findings confirmed the potent renoprotective potential of moralbosteroid. This was evidenced by the minimized intensity of nephritic cellular destruction. In animal studies, moralbosteroid exhibited dose-dependent activity, which is thought to be mediated through its antioxidant potential.
  17. Velu V, Banerjee S, Radhakrishnan V, Gupta G, Chellappan DK, Fuloria NK, et al.
    PMID: 33573582 DOI: 10.2174/1871523020666210126144506
    AIMS: The present investigation was aimed at exploring the phytoconstituents using Gas Chromatography Mass Spectroscopy and to evaluate antioxidant and anti-inflammatory properties of the leaf extracts.

    MATERIALS AND METHODS: The extracts were obtained sequentially with petroleum ether, ethyl acetate and water using Soxhlet apparatus. The anti-inflammatory property of the identified compounds using GC- MS spectroscopy was evaluated in silico. The antioxidant activity was performed by DPPH and H2O2 method whereas anti-inflammatory study was carried out by HRBC membrane stabilization method. Terpenoids were found to be a major constituents in petroleum ether extract while, phenols and flavonoids were predominantly found in ethyl acetate extract.

    RESULTS AND DISCUSSION: The GC-MS analysis of the extract revealed six major molecules including Squalene, 19β, 28-epoxyleanan-3-ol and 2-tu-Butyl-5-chloromethyl-3-methyl-4-oxoimidazolidine- 1-carboxylic acid. The ethyl acetate extract showed a significant antioxidant activity (P<0.01) in both DPPH method (70.87%) and H2O2 method (73.58%) at 200 μg mL-1. Increased membrane stabilization of petroleum ether extract was observed in the in vitro anti-inflammatory activity study. A strong relationship between the terpenoid content and anti-inflammatory activity was obtained from the correlation (0.971) and docking study.

    CONCLUSION: These results justify T. involucrata to be a rich source of terpenoids with potent anti- inflammatory property.

  18. Devkota HP, Paudel KR, Jha NK, Gupta PK, Singh SK, Chellappan DK, et al.
    Nanomedicine (Lond), 2021 11;16(27):2407-2410.
    PMID: 34670398 DOI: 10.2217/nnm-2021-0275
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links