Displaying publications 81 - 96 of 96 in total

Abstract:
Sort:
  1. Mohd Yusof Chan NN, Idris A, Zainal Abidin ZH, Tajuddin HA, Abdullah Z
    RSC Adv, 2021 Apr 07;11(22):13409-13445.
    PMID: 35423891 DOI: 10.1039/d1ra00129a
    Large (mega) Stokes shift molecules have shown great potential in white light emission for optoelectronic applications, such as flat panel display technology, light-emitting diodes, photosensitizers, molecular probes, cellular and bioimaging, and other applications. This review aims to summarize recent developments of white light generation that incorporate a large Stokes shift component, key approaches to designing large Stokes shift molecules, perspectives on future opportunities, and remaining challenges confronting this emerging research field. After a brief introduction of feasible pathways in generating white light, exemplifications of large Stokes shift molecules as white light candidates from organic and inorganic-based materials are illustrated. Various possible ways to design such molecules have been revealed by integrating the photophysical mechanisms that are essential to produce red-shifted emission upon photoexcitation, such as excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), excited state geometrical relaxation or structural deformation, aggregation-induced emission (AIE) alongside the different formations of aggregates, interplay between monomer and excimer emission, host-guest interaction, and lastly metal to ligand charge transfer (MLCT) via harvesting triplet state. Furthermore, previously reported fluorescent materials are described and categorized based on luminescence behaviors on account of the Stokes shifts value. This review will serve as a rationalized introduction and reference for researchers who are interested in exploring large or mega Stokes shift molecules, and will motivate new strategies along with instigation of persistent efforts in this prominent subject area with great avenues.
  2. Murizan NIS, Mustafa NS, Ngadiman NHA, Mohd Yusof N, Idris A
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261121 DOI: 10.3390/polym12122818
    Nanocrystalline cellulose is an abundant and inexhaustible organic material on Earth. It can be derived from many lignocellulosic plants and also from agricultural residues. They endowed exceptional physicochemical properties, which have promoted their intensive exploration in biomedical application, especially for tissue engineering scaffolds. Nanocrystalline cellulose has been acknowledged due to its low toxicity and low ecotoxicological risks towards living cells. To explore this field, this review provides an overview of nanocrystalline cellulose in designing materials of bone scaffolds. An introduction to nanocrystalline cellulose and its isolation method of acid hydrolysis are discussed following by the application of nanocrystalline cellulose in bone tissue engineering scaffolds. This review also provides comprehensive knowledge and highlights the contribution of nanocrystalline cellulose in terms of mechanical properties, biocompatibility and biodegradability of bone tissue engineering scaffolds. Lastly, the challenges for future scaffold development using nanocrystalline cellulose are also included.
  3. Wan Saffiee WA, Idris A, Aiyub Z, Abdullah Z, Ng SW
    PMID: 21581731 DOI: 10.1107/S1600536808041160
    The aromatic and the aromatic fused-rings in the title compound, C(15)H(13)N(3), open the angle at the planar N atom to 130.07 (13) and 129.98 (13)° in the two independent mol-ecules in the asymmetric unit. The amino N atom of one mol-ecule forms a hydrogen bond to the 4-N atom of an adjacent quinoxalinyl ring, generating a supra-molecular chain.
  4. Dieng H, Satho T, Abang F, Meli NKKB, Ghani IA, Nolasco-Hipolito C, et al.
    Acta Trop, 2017 May;169:84-92.
    PMID: 28174057 DOI: 10.1016/j.actatropica.2017.01.022
    In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent.
  5. Dieng H, Satho T, Abang F, Miake F, Ghani IA, Latip NA, et al.
    Environ Sci Pollut Res Int, 2017 Sep;24(26):21375-21385.
    PMID: 28744676 DOI: 10.1007/s11356-017-9624-y
    Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals' behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.
  6. Dieng H, Satho T, Abang F, Miake F, Azman FAB, Latip NA, et al.
    Indian J Med Res, 2018 Sep;148(3):334-340.
    PMID: 30425225 DOI: 10.4103/ijmr.IJMR_1604_16
    Background & objectives: In sterile insect technology (SIT), mating competitiveness is a pre-condition for the reduction of target pest populations and a crucial parameter for judging efficacy. Still, current SIT trials are being hindered by decreased effectiveness due to reduced sexual performance of released males. Here, we explored the possible role of a herbal aphrodisiac in boosting the mating activity of Aedes aegypti.

    Methods: Males were fed one of two diets in this study: experimental extract of Eurycoma longifolia (MSAs) and sugar only (MSOs). Differences in life span, courtship latency, copulation activity and mating success were examined between the two groups.

    Results: No deaths occurred among MSA and MSO males. Life span of MSOs was similar to that of MSAs. The courtship latency of MSAs was shorter than that of MSOs (P<0.01). MSAs had greater copulation success than MSOs (P<0.001). In all female treatments, MSAs mated more than MSOs, but the differences in rate were significant only in the highest female density (P<0.05). In MSAs, mating success varied significantly with female density (P<0.01), with the 20-female group (P<0.01) having the lowest rate. Single MSA had better mating success at the two lowest female densities. In MSOs, there were no significant differences in mating success rate between the different female densities.

    Interpretation & conclusions: Our results suggested that the herbal aphrodisiac, E. longifolia, stimulated the sexual activity of Ae. aegypti and may be useful for improving the mating competitiveness of sterile males, thus improving SIT programmes.

  7. Almaki JH, Nasiri R, Idris A, Majid FA, Salouti M, Wong TS, et al.
    Nanotechnology, 2016 Mar 11;27(10):105601.
    PMID: 26861770 DOI: 10.1088/0957-4484/27/10/105601
    A stable, biocompatible and exquisite SPIONs-PEG-HER targeting complex was developed. Initially synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were silanized using 3-aminopropyltrimethoxysilane (APS) as the coupling agent in order to allow the covalent bonding of polyethylene glycol (PEG) to the SPIONs to improve the biocompatibility of the SPIONs. SPIONs-PEG were then conjugated with herceptin (HER) to permit the SPIONs-PEG-HER to target the specific receptors expressed over the surface of the HER2+ metastatic breast cancer cells. Each preparation step was physico-chemically analyzed and characterized by a number of analytical methods including AAS, FTIR spectroscopy, XRD, FESEM, TEM, DLS and VSM. The biocompatibility of SPIONs-PEG-HER was evaluated in vitro on HSF-1184 (human skin fibroblast cells), SK-BR-3 (human breast cancer cells, HER+), MDA-MB-231 (human breast cancer cells, HER-) and MDA-MB-468 (human breast cancer cells, HER-) cell lines by performing MTT and trypan blue assays. The hemolysis analysis results of the SPIONs-PEG-HER and SPIONs-PEG did not indicate any sign of lysis while in contact with erythrocytes. Additionally, there were no morphological changes seen in RBCs after incubation with SPIONs-PEG-HER and SPIONs-PEG under a light microscope. The qualitative and quantitative in vitro targeting studies confirmed the high level of SPION-PEG-HER binding to SK-BR-3 (HER2+ metastatic breast cancer cells). Thus, the results reflected that the SPIONs-PEG-HER can be chosen as a favorable biomaterial for biomedical applications, chiefly magnetic hyperthermia, in the future.
  8. Irfan M, Irfan M, Shah SM, Baig N, Saleh TA, Ahmed M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109769.
    PMID: 31349444 DOI: 10.1016/j.msec.2019.109769
    Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.
  9. Abba MU, Man HC, Azis RS, Isma Idris A, Hazwan Hamzah M, Yunos KF, et al.
    Nanomaterials (Basel), 2021 Feb 04;11(2).
    PMID: 33557323 DOI: 10.3390/nano11020399
    High proportion of copper has become a global challenge owing to its negative impact on the environment and public health complications. The present study focuses on the fabrication of a polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) fiber membrane incorporated with varying loading (0, 0.5, 1.0, 1.5, and 2.0 wt%) of titanium dioxide (TiO2) nanoparticles via phase inversion technique to achieve hydrophilicity along with high selectivity for copper removal. The developed fibers were characterized based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), permeability, porosity, zeta potential, and contact angle. The improved membrane (with 1.0 wt% TiO2) concentration recorded the maximum flux (223 L/m2·h) and copper rejection (98.18%). Similarly, 1.0 wt% concentration of TiO2 nanoparticles made the membrane matrix more hydrophilic with the least contact angle of 50.01°. The maximum copper adsorption capacity of 69.68 mg/g was attained at 1.0 wt% TiO2 concentration. The experimental data of adsorption capacity were best fitted to the Freundlich isotherm model with R2 value of 0.99573. The hybrid membrane developed in this study has considerably eliminated copper from leachate and the concentration of copper in the permeate was substantially reduced to 0.044 mg/L, which is below standard discharge threshold.
  10. Cheah WL, Francis Wing CB, Zahari AN, Idris AS, Maksul NAA, Yusman NAL, et al.
    Ethics Med Public Health, 2021 Jun;17:100651.
    PMID: 33754125 DOI: 10.1016/j.jemep.2021.100651
    Background: The COVID-19 pandemic has resulted in many changes in the delivery of health service which not only affect the public as well as healthcare workers, and also among medical and nursing students who are currently undergoing their training. This study aims to determine the commitment and willingness of medical and nursing students in Sarawak in treating patients with COVID-19 and its associated factors.

    Methods: It was a cross-sectional study using online questionnaire, carried out in a public university in Sarawak, Malaysia. All medical and nursing students were invited to participate in this study. Data was entered and analysed using IBM SPSS version 22.

    Result: A total of 304 respondents participated in the study, with 81.6% female and 69.4% medical students. Majority of the respondents were most willing to take a medical history, do a physical examination, throat swabbing, draw blood and perform IV drip insertion. There was a high commitment among respondents to treat COVID-19 patients regardless of personal risks. Majority of the respondents also agreed that medical staff who are involved in treating COVID-19 patients should be receiving a salary increase and compensation should be given to affected healthcare families, and all non-medical staff should be involved in treating COVID-19 patients. About 71% agreed about a law mandating medical staffs to treat patient.

    Conclusion: The willingness and commitment of medical and nursing students to treat COVID-19 patients was high, indicating their potential work force as healthcare providers.

  11. Isaac IL, Walter AWCY, Bakar MFA, Idris AS, Bakar FDA, Bharudin I, et al.
    Data Brief, 2018 Apr;17:1108-1111.
    PMID: 29876468 DOI: 10.1016/j.dib.2018.02.027
    Ganoderma boninense is known to be the causal agent for basal stem rot (BSR) affecting the oil palm industry worldwide thus cumulating to high economic losses every year. Several reports have shown that a compatible monokaryon pair needs to mate; producing dikaryotic mycelia to initiate the infection towards the oil palm. However, the molecular events occurs during mating process are not well understood. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from monokaryon, mating junction and dikaryon mycelia of G. boninense. Raw reads from these three libraries were deposited in the NCBI database with accession number SRR1745787, SRR1745773 and SRR1745777, respectively.
  12. Irfan M, Irfan M, Idris A, Baig N, Saleh TA, Nasiri R, et al.
    J Biomed Mater Res A, 2019 03;107(3):513-525.
    PMID: 30484939 DOI: 10.1002/jbm.a.36566
    This study focused to optimize the performance of polyethersulfone (PES) hemodialysis (HD) membrane using carboxylic functionalized multiwall carbon nanotubes (c-MWCNT) and lower molecular weight grade of polyvinylpyrrolidone (PVP-k30). Initially, MWCNT were chemically functionalized by acid treatment and nanocomposites (NCs) of PVP-k30 and c-MWCNT were formed and subsequently blended with PES polymer. The spectra of FTIR of the HD membranes revealed that NCs has strong hydrogen bonding and their addition to PES polymer improved the capillary system of membranes as confirmed by Field Emission Scanning Electron Microscope (FESEM) and leaching of the additive decreased to 2% and hydrophilicity improved to 22%. The pore size and porosity of NCs were also enhanced and rejection rate was achieved in the establish dialysis range (<60 kDa). The antifouling studies had shown that NCs membrane exhibited 30% less adhesion of protein with 80% flux recovery ratio. The blood compatibility assessment disclosed that NCs based membranes showed prolonged thrombin and prothrombin clotting times, lessened production of fibrinogen cluster, and greatly suppressed adhesion of blood plasma than a pristine PES membrane. The results also unveiled that PVP-k30/NCs improved the surface properties of the membrane and the urea and creatinine removal increased to 72% and 75% than pure PES membranes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 513-525, 2019.
  13. Jalil AA, Triwahyono S, Razali NA, Hairom NH, Idris A, Muhid MN, et al.
    J Hazard Mater, 2010 Feb 15;174(1-3):581-5.
    PMID: 19864065 DOI: 10.1016/j.jhazmat.2009.09.091
    Electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators such as naphthalene, biphenyl, phenanthrene, anthracene, and pyrene, was studied. The amount of mediator required was able to be reduced to 0.01 equiv. for all mediators except for anthracene, with the complete dechlorination of mono-, 1,3-di- and 1,2,4-trichlorobenzene still achieved. This catalytic amount of mediator plays an important role in accelerating the dechlorination through the rapid formation of radical anions prior to reduction of the chlorobenzenes.
  14. Shafie SNA, Md Nordin NAH, Bilad MR, Misdan N, Sazali N, Putra ZA, et al.
    Membranes (Basel), 2021 May 19;11(5).
    PMID: 34069683 DOI: 10.3390/membranes11050371
    This study focuses on the effect of modified silica fillers by [EMIN][Tf2N] via physical adsorption on the CO2 separation performance of a mixed matrix membrane (MMM). The IL-modified silica was successfully synthesized as the presence of fluorine element was observed in both Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses. The prepared MMMs with different loadings of the IL-modified silica were then compared with an unmodified silica counterpart and neat membrane. The morphology of IL-modified MMMs was observed to have insignificant changes, while polymer chains of were found to be slightly more flexible compared to their counterpart. At 2 bar of operating pressure, a significant increase in performance was observed with the incorporation of 3 wt% Sil-IL fillers compared to that of pure polycarbonate (PC). The permeability increased from 353 to 1151 Barrer while the CO2/CH4 selectivity increased from 20 to 76. The aforementioned increment also exceeded the Robeson upper bound. This indicates that the incorporation of fillers surface-modified with ionic liquid in an organic membrane is worth exploring for CO2 separation.
  15. Jafar A, Dollah R, Mittal P, Idris A, Kim JE, Abdullah MS, et al.
    PMID: 36673659 DOI: 10.3390/ijerph20020905
    During the COVID-19 era, most countries, including Malaysia, have shifted from face-to-face teaching systems to online teaching programs. The aim of this study is to identify the main challenges that higher education students face during e-learning based on their residential location throughout Peninsular Malaysia. This study further examines the readiness of higher education students to apply e-learning. Therefore, a cross-sectional survey approach is used to fulfil the outlined objectives. Accordingly, 761 public (95.3%) and private (4.7%) higher education students residing in Peninsular Malaysia are sampled in this study. The survey was administered online for 37 days, from 21 October 21 to 6 December 2021, using either WhatsApp or Facebook. The raw data is inferentially (Principal Component Analysis, K-Means Clustering, Kruskal Wallis, and spatial analysis) and descriptively (mean, standard deviation & percentage) analyzed. It has been revealed that six clusters of students in Peninsular Malaysia face various challenges while following the e-learning program. Most states in Peninsular Malaysia are dominated by students in Cluster D (Terengganu, Perlis, Penang, Selangor, WP Kuala Lumpur, and WP Putrajaya) and Cluster B categories (Melaka, Johor, Kelantan, and Kedah). Students in the Cluster D category tend to suffer from physical health disorders and social isolation, while students in the Cluster B category face problems with decreased focus in learning, mental health disorders, and social isolation. The outcomes further indicate that the more challenges students face during e-learning programs, the lower their willingness to continue with the program. The results of this study are significant in addressing the challenges of e-learning, which will help stakeholders address and strengthen student abilities.
  16. Uddin MR, Akhter F, Abedin MJ, Shaikh MAA, Al Mansur MA, Saydur Rahman M, et al.
    Heliyon, 2024 Jul 15;10(13):e33507.
    PMID: 39035538 DOI: 10.1016/j.heliyon.2024.e33507
    In the delta region of Bangladesh, Sonneratia apetala, also known as Keora and mangrove apple, is widely recognized for its dual role as a source of both food and medicine. Seasonal S. apetala fruits were gathered from Hatiya, Noakhali, in October 2021. The samples were segregated into pericarps and seeds, then fractionated into methanol segments. The anti-proliferative activities of these samples against lung A549 cells were evaluated using the Trypan blue exclusion method. Additionally, High-Performance Liquid Chromatography (HPLC) was employed to quantify phenolic compounds, while standard protocols facilitated the identification of specific phytochemical constituents. Chemical profiling via Gas Chromatography-Mass Spectrometry (GC-MS) and the isolation and detection of bioactive compounds through column chromatography and Nuclear Magnetic Resonance (NMR) analysis were undertaken. The methanol fractions of the seeds and pericarp were found to contain carbohydrates, tannins, flavonoids, steroids, alkaloids, glycosides, and terpenoids, with the absence of saponins and anthraquinones. Notably, the anti-proliferative effect demonstrated statistical significance at a concentration of 300 μg/mL for both extracts. Furthermore, HPLC analysis identified and quantified six polyphenols: catechin hydrate, (-)-epicatechin, rutin hydrate, trans-ferulic acid, trans-cinnamic acid, myricetin, and kaempferol, with the following concentrations: 46.65 and 12.72; 349.29 and 140.39; 5.26 and 33.06; 10.35 and 29.28; ND and 11.93; and 10.03 and 7.90 mg/100 g in the methanol fraction of the seed and pericarp, respectively. GC-MS analysis of S. apetala fruit revealed five notable compounds with significant peak areas (%): 2-methyltetracosane, tetratetracontane, heptacosane, 1-chloro-2-hexyl-1-octanol, and phenol, 3,5-bis(1,1-dimethylethyl), exhibiting peak areas of 43.96, 35.8, and 15.95, respectively. Meanwhile, the notable peak in S. apetala seeds was 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, with a peak area (%) of 100. These compounds are known for their anticancer and antioxidant properties. Therefore, S. apetala, particularly its seeds and fruits, shows promising potential for development into dietary supplements and functional foods.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links