Displaying publications 81 - 100 of 158 in total

Abstract:
Sort:
  1. Subramani IG, Perumal V, Gopinath SCB, Mohamed NM, Ovinis M, Sze LL
    Sci Rep, 2021 10 21;11(1):20825.
    PMID: 34675227 DOI: 10.1038/s41598-021-00057-4
    The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing β-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and β-lactoglobulin. The non-faradaic sensing of milk allergen β-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.
  2. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M
    Materials (Basel), 2013 Apr 29;6(5):1608-1620.
    PMID: 28809232 DOI: 10.3390/ma6051608
    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
  3. Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS
    Environ Sci Pollut Res Int, 2018 Jun;25(16):15307-15325.
    PMID: 29721797 DOI: 10.1007/s11356-018-2098-8
    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
  4. Mahlia TMI, Ismail N, Hossain N, Silitonga AS, Shamsuddin AH
    Environ Sci Pollut Res Int, 2019 May;26(15):14849-14866.
    PMID: 30937750 DOI: 10.1007/s11356-019-04563-x
    Due to global warming and increasing price of fossil fuel, scientists all over the world have been trying to find reliable alternative fuels. One of the most potential candidates is renewable energy from biomass. The race for renewable energy from biomass has long begun and focused on to combat the deteriorating condition of the environment. Palm oil has been in the spotlight as an alternative of bioenergy sources to resolve fossil fuel problem due to its environment-friendly nature. This review will look deep into the origins of palm oil and how it is processed, bioproducts from this biomass, and oil palm biomass-based power plant in Malaysia. Palm oil is usually processed from oil palm fruits and other parts of the oil palm plant are candidates for raw material of bioproduct generation. Oil palm biomass can be turned into three subcategories: bioproduct, biofuels, and biopower. Focusing on biofuel, the biodiesel from palm oil will be explored in detail and its implication in Malaysia as one of the biggest producers of oil palm in the world will also be emphasized comprehensively. The paper presents the detail of a schematic flow diagram of a palm oil mill process of transforming oil palm into crude palm oil and it wastes. This paper will also discuss the current oil palm biomass power plants in Malaysia. Palm oil has been proven itself as a potential alternative to reduce negative environmental impact of global warming.
  5. Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, et al.
    Front Microbiol, 2023;14:1135977.
    PMID: 37025644 DOI: 10.3389/fmicb.2023.1135977
    The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
  6. Yosep I, Suryani S, Mediani HS, Mardhiyah A, Maulana I, Hernawaty T, et al.
    J Multidiscip Healthc, 2024;17:1777-1790.
    PMID: 38680879 DOI: 10.2147/JMDH.S460343
    Bullying is a global problem in adolescents which has increased every year. One of the factors in the occurrence of bullying is the ability of interpersonal skills. This ability can build good relationships with assertive between adolescents and can prevent bullying. The purpose of this study is to describe assertiveness therapy for reducing bullying behavior and its impacts among adolescents. The method used in this study is scoping review. The search strategy used is PRISMA Extension for Scoping Reviews through three databases namely PubMed, CINAHL, and Scopus. The authors used inclusion criteria and exclusion criteria in the selection of articles. The major keywords used in the article search were bullying, assertiveness therapy, and adolescents. Data analysis used descriptive qualitative. The results showed that there were 10 articles that discussed assertive therapy. All articles show that assertiveness therapy can reduce bullying behavior and its impact significantly, such as reducing the impact of anxiety and increasing self-esteem. Assertiveness therapy methods carried out in the form of education, games, and role play. Education is carried out online and offline. Educational media is provided directly and through media such as educational videos which can be accessed at any time. Gender and cultural approaches are important aspects in the implementation of assertive therapy. Assertive therapy can improve interpersonal skills, social skills, empathy and assertiveness so that it can reduce bullying behavior and its impacts in adolescents. Then, this data becomes the basis for nurses to carry out assertive therapy as an effort to prevent and reduce bullying behavior in adolescents.
  7. Leong CS, Vythilingam I, Liew JW, Wong ML, Wan-Yusoff WS, Lau YL
    Parasit Vectors, 2019 May 16;12(1):236.
    PMID: 31097010 DOI: 10.1186/s13071-019-3472-1
    BACKGROUND: Dengue is a serious public health problem worldwide, including in Selangor, Malaysia. Being an important vector of dengue virus, Aedes aegypti are subjected to control measures which rely heavily on the usage of insecticides. Evidently, insecticide resistance in Ae. aegypti, which arise from several different point mutations within the voltage-gated sodium channel genes, has been documented in many countries. Thus, this robust study was conducted in all nine districts of Selangor to understand the mechanisms of resistance to various insecticides in Ae. aegypti. Mosquitoes were collected from dengue epidemic and non-dengue outbreak areas in Selangor.

    METHODS: Using the Center for Disease Control and Prevention (CDC) bottle assays, the insecticide resistance status of nine different Ae. aegypti strains from Selangor was accessed. Synergism tests and biochemical assays were conducted to further understand the metabolic mechanisms of insecticide resistance. Polymerase chain reaction (PCR) amplification and sequencing of the IIP-IIS6 as well as IIIS4-IIIS6 regions of the sodium channel gene were performed to enable comparisons between susceptible and resistant mosquito strains. Additionally, genomic DNA was used for allele-specific PCR (AS-PCR) genotyping of the gene to detect the presence of F1534C, V1016G and S989P mutations.

    RESULTS: Adult female Ae. aegypti from various locations were susceptible to malathion and propoxur. However, they exhibited different levels of resistance against dichlorodiphenyltrichloroethane (DDT) and pyrethroids. The results of synergism tests and biochemical assays indicated that the mixed functions of oxidases and glutathione S-transferases contributed to the DDT and pyrethroid resistance observed in the present study. Besides detecting three single kdr mutations, namely F1534C, V1016G and S989P, co-occurrence of homozygous V1016G/S989P (double allele) and F1534C/V1016G/S989P (triple allele) mutations were also found in Ae. aegypti. As per the results, the three kdr mutations had positive correlations with the expressions of resistance to DDT and pyrethroids.

    CONCLUSIONS: In view of the above outcomes, it is important to seek new tools for vector management instead of merely relying on insecticides. If the latter must be used, regular monitoring of insecticide resistance should also be carried out at all dengue epidemic areas. Since the eggs of Ae. aegypti can be easily transferred from one location to another, it is probable that insecticide-resistant Ae. aegypti can be found at non-dengue outbreak sites as well.

  8. Pramasivan S, Ngui R, Jeyaprakasam NK, Low VL, Liew JWK, Vythilingam I
    Parasit Vectors, 2023 Oct 09;16(1):355.
    PMID: 37814287 DOI: 10.1186/s13071-023-05984-x
    BACKGROUND: Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia.

    METHODS: Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables.

    RESULTS: Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak.

    CONCLUSION: The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.

  9. Jeyaprakasam NK, Low VL, Liew JWK, Pramasivan S, Wan-Sulaiman WY, Saeung A, et al.
    Sci Rep, 2022 01 10;12(1):354.
    PMID: 35013403 DOI: 10.1038/s41598-021-04106-w
    Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.
  10. Jeyaprakasam NK, Low VL, Pramasivan S, Liew JWK, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2023 Jun;17(6):e0011438.
    PMID: 37384790 DOI: 10.1371/journal.pntd.0011438
    BACKGROUND: The elimination of malaria in Southeast Asia has become more challenging as a result of rising knowlesi malaria cases. In addition, naturally occurring human infections with other zoonotic simian malaria caused by Plasmodium cynomolgi and Plasmodium inui adds another level of complexity in malaria elimination in this region. Unfortunately, data on vectors which are responsible for transmitting this zoonotic disease is very limited.

    METHODOLOGY/PRINCIPAL FINDINGS: We conducted longitudinal studies to investigate the entomological parameters of the simian malaria vectors and to examine the genetic diversity and evolutionary pattern of their simian Plasmodium. All the captured Anopheles mosquitoes were dissected to examine for the presence of oocysts, sporozoites and to determine the parous rate. Our study revealed that the Anopheles Leucosphyrus Group mosquitoes are highly potential competent vectors, as evidenced by their high rate of parity, survival and sporozoite infections in these mosquitoes. Thus, these mosquitoes represent a risk of human infection with zoonotic simian malaria in this region. Haplotype analysis on P. cynomolgi and P. inui, found in high prevalence in the Anopheles mosquitoes from this study, had shown close relationship between simian Plasmodium from the Anopheles mosquitoes with its vertebrate hosts. This directly signifies the ongoing transmission between the vector, macaques, and humans. Furthermore, population genetic analysis showed significant negative values which suggest that both Plasmodium species are undergoing population expansion.

    CONCLUSIONS/SIGNIFICANCE: With constant microevolutionary processes, there are potential for both P. inui and P. cynomolgi to emerge and spread as a major public health problem, following the similar trend of P. knowlesi. Therefore, concerted vector studies in other parts of Southeast Asia are warranted to better comprehend the transmission dynamics of this zoonotic simian malaria which eventually would aid in the implementation of effective control measures in a rapidly changing environment.

  11. Hayeemasae N, Masa A, Ahmad HS, Shuib RK, Ismail H, Surya I
    Polymers (Basel), 2022 Nov 13;14(22).
    PMID: 36433023 DOI: 10.3390/polym14224896
    A massive demand for rubber-based goods, particularly gloves, was sparked by the emergence of the COVID-19 epidemic worldwide. This resulted in thousands of tons of gloves being scrapped due to the constant demand for the items, endangering our environment in a grave way. In this work, we aimed to focus on the utilization of waste nitrile gloves (r-NBR) as a component blended with natural rubber (NR). The life span and other related properties of the blend can be improved by proper control of the chemical recipe. This study assessed three types of crosslinking systems, namely sulfur (S), peroxide (DCP), and mixed sulfur/peroxide (S/DCP) systems. The results indicate that choosing S/DCP strongly affected the tensile strength of the blend, especially at relatively high contents of r-NBR, improving the strength by 40-60% for cases with 25-35 phr of r-NBR. The improvement depended on the crosslink types induced in the blends. It is interesting to highlight that the thermal resistance of the blends was significantly improved by using the S/DCP system. This indicates that the life span of this blend can be prolonged by using a proper curing system. Overall, the S/DCP showed the best results, superior to those with S and DCP crosslinking systems.
  12. Liew JWK, Bukhari FDM, Jeyaprakasam NK, Phang WK, Vythilingam I, Lau YL
    Emerg Infect Dis, 2021 10;27(10):2700-2703.
    PMID: 34545786 DOI: 10.3201/eid2710.210412
    We detected 2 natural, asymptomatic Plasmodium inui monoinfections in humans in Malaysia by using nested PCR on concentrated high-volume blood samples. We found a P. inui-positive Anopheles cracens mosquito in the same site as the human infections. Investigators should use ultrasensitive detection methods to identify simian malaria parasite transmission in humans.
  13. Li MI, Mailepessov D, Vythilingam I, Lee V, Lam P, Ng LC, et al.
    PLoS Negl Trop Dis, 2021 Jan;15(1):e0009110.
    PMID: 33493205 DOI: 10.1371/journal.pntd.0009110
    Plasmodium knowlesi is a simian malaria parasite currently recognized as the fifth causative agent of human malaria. Recently, naturally acquired P. cynomolgi infection in humans was also detected in Southeast Asia. The main reservoir of both parasites is the long-tailed and pig-tailed macaques, which are indigenous in this region. Due to increased urbanization and changes in land use, there has been greater proximity and interaction between the long-tailed macaques and the general population in Singapore. As such, this study aims to determine the prevalence of simian malaria parasites in local macaques to assess the risk of zoonosis to the general human population. Screening for the presence of malaria parasites was conducted on blood samples from 660 peridomestic macaques collected between Jan 2008 and Mar 2017, and 379 wild macaques collected between Mar 2009 and Mar 2017, using a Pan-Plasmodium-genus specific PCR. Positive samples were then screened using a simian Plasmodium species-specific nested PCR assay to identify the species of parasites (P. knowlesi, P. coatneyi, P. fieldi, P. cynomolgi, and P. inui) present. All the peridomestic macaques sampled were tested negative for malaria, while 80.5% of the 379 wild macaques were infected. All five simian Plasmodium species were detected; P. cynomolgi being the most prevalent (71.5%), followed by P. knowlesi (47.5%), P. inui (42.0%), P. fieldi (32.5%), and P. coatneyi (28.5%). Co-infection with multiple species of Plasmodium parasites was also observed. The study revealed that Singapore's wild long-tailed macaques are natural hosts of the five simian malaria parasite species, while no malaria was detected in all peridomestic macaques tested. Therefore, the risk of simian malaria transmission to the general human population is concluded to be low. However, this can be better demonstrated with the incrimination of the vectors of simian malaria parasites in Singapore.
  14. Zulzahrin Z, Wong ML, Naziri MRA, Lau YL, Vythilingam I, Lee WC
    Heliyon, 2024 Feb 15;10(3):e25207.
    PMID: 38322922 DOI: 10.1016/j.heliyon.2024.e25207
    Wing measurement is an important parameter in many entomological studies. However, the methods of measuring wings vary with studies, and a gold standard method was not available for this procedure. This in turn limits researchers from confidently comparing their research findings with published data collected by other means of measurement. This study investigated the interchangeability of three commonly available methods for wing measurement, namely the calliper method, stereomicroscope-assisted photography method, and digital microscope-assisted photography method, using the laboratory colony of Aedes aegypti. It was found that the calliper method and the photography-based methods yielded similar results, hence the good interchangeability of these methods. Nevertheless, the digital microscope-assisted photography method yielded more accurate measurements, due to the higher resolution of the captured photos, and minimal technical bias during the data collection, as compared to the calliper-based and stereomicroscope-assisted photography methods. This study served as a reference for researchers to select the most suitable measurement method in future studies.
  15. Sukumarran D, Hasikin K, Khairuddin ASM, Ngui R, Sulaiman WYW, Vythilingam I, et al.
    Parasit Vectors, 2024 Apr 16;17(1):188.
    PMID: 38627870 DOI: 10.1186/s13071-024-06215-7
    BACKGROUND: Malaria is a serious public health concern worldwide. Early and accurate diagnosis is essential for controlling the disease's spread and avoiding severe health complications. Manual examination of blood smear samples by skilled technicians is a time-consuming aspect of the conventional malaria diagnosis toolbox. Malaria persists in many parts of the world, emphasising the urgent need for sophisticated and automated diagnostic instruments to expedite the identification of infected cells, thereby facilitating timely treatment and reducing the risk of disease transmission. This study aims to introduce a more lightweight and quicker model-but with improved accuracy-for diagnosing malaria using a YOLOv4 (You Only Look Once v. 4) deep learning object detector.

    METHODS: The YOLOv4 model is modified using direct layer pruning and backbone replacement. The primary objective of layer pruning is the removal and individual analysis of residual blocks within the C3, C4 and C5 (C3-C5) Res-block bodies of the backbone architecture's C3-C5 Res-block bodies. The CSP-DarkNet53 backbone is simultaneously replaced for enhanced feature extraction with a shallower ResNet50 network. The performance metrics of the models are compared and analysed.

    RESULTS: The modified models outperform the original YOLOv4 model. The YOLOv4-RC3_4 model with residual blocks pruned from the C3 and C4 Res-block body achieves the highest mean accuracy precision (mAP) of 90.70%. This mAP is > 9% higher than that of the original model, saving approximately 22% of the billion floating point operations (B-FLOPS) and 23 MB in size. The findings indicate that the YOLOv4-RC3_4 model also performs better, with an increase of 9.27% in detecting the infected cells upon pruning the redundant layers from the C3 Res-block bodies of the CSP-DarkeNet53 backbone.

    CONCLUSIONS: The results of this study highlight the use of the YOLOv4 model for detecting infected red blood cells. Pruning the residual blocks from the Res-block bodies helps to determine which Res-block bodies contribute the most and least, respectively, to the model's performance. Our method has the potential to revolutionise malaria diagnosis and pave the way for novel deep learning-based bioinformatics solutions. Developing an effective and automated process for diagnosing malaria will considerably contribute to global efforts to combat this debilitating disease. We have shown that removing undesirable residual blocks can reduce the size of the model and its computational complexity without compromising its precision.

  16. Wong HV, Vythilingam I, Sulaiman WY, Lulla A, Merits A, Chan YF, et al.
    Am J Trop Med Hyg, 2016 Jan;94(1):182-6.
    PMID: 26598564 DOI: 10.4269/ajtmh.15-0318
    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection.
  17. Ahmad NA, Vythilingam I, Lim YAL, Zabari NZAM, Lee HL
    Am J Trop Med Hyg, 2017 Jan 11;96(1):148-156.
    PMID: 27920393 DOI: 10.4269/ajtmh.16-0516
    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia-mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs.
  18. Fitriawan AS, Kartika AI, Chasanah SN, Aryandono T, Haryana SM
    Malays J Med Sci, 2020 Dec;27(6):27-38.
    PMID: 33447132 DOI: 10.21315/mjms2020.27.6.4
    BACKGROUND: Epithelial ovarian cancer (EOC) is a lethal disease due to late diagnosis and lack of effective screening methods. MicroRNA (miR/miRNA) plays an important role in ovarian carcinogenesis and may serve as a non-invasive biomarker for EOC. This study aimed to assess miR-141 expression in the blood plasma of patients with EOC and healthy subjects and determine its association with the clinical stage of EOC.

    METHODS: This cross-sectional study used blood plasma from 30 newly diagnosed untreated patients with EOC and 25 healthy subjects. The mean age was 47.73 (SD = 10.29) years for EOC and 44.48 (SD = 16.14) years for healthy subject. The total RNA was isolated from blood plasma and reversed transcribed to obtain cDNA. The expression of miR-141 was measured by real-time quantitative polymerase chain reaction (qRT-PCR), and calculated using 2-ΔΔCt methods. The data were analysed using Mann-Whitney test.

    RESULTS: The expression of miR-141 was upregulated 8.41 fold in the blood plasma of EOC patients compared to healthy controls (P < 0.001). Expression of miR-141 in the advanced stage was upregulated 4.2 fold compared to the early stage (P < 0.001).

    CONCLUSION: The miR-141 was upregulated in the blood plasma of EOC and associated with an advanced stage of disease, suggesting it has potential as a biomarker for EOC detection.

  19. Prasetya AIP, Ammarullah MI, Winarni TI, Pramono A, Jamari J, Kamarul T, et al.
    Health Sci Rep, 2025 Jan;8(1):e70305.
    PMID: 39846047 DOI: 10.1002/hsr2.70305
    BACKGROUND AND AIMS: High contact stresses involving the hip have been shown to increase the risk of developing hip osteoarthritis (OA). Although several risk factors have been identified for OA, a holistic approach to predicting contributed factors toward increased hip contact stresses have not been explored. This study was conducted to comprehensively understand the effects of physical activity on high hip contact stress as predisposing factors of OA.

    METHODS: The protocol of this systematic review was registered in PROSPERO with registration number CRD42022296638 and conducted based on PRISMA guidelines. Full articles that matched our inclusion criteria were selected using PubMed, Web of Science, and Scopus search engines and keywords such as "hip contact stress," "hip contact force," and/or "hip contact pressure." Category of factors, experimental design, results of the study, and evidence from each article were analyzed.

    RESULTS: In total 7972 papers were screened, identified, and reviewed. Two independent authors read the collected fulltext of eligible articles resulting in 21 papers that fulfilled the inclusion criteria of this systematic review.

    CONCLUSION: Types of physical activity (n = 21) have correlation with high hip joint contact stress in various manner. Based on the research findings obtained from various inclusion papers, it can be broadly concluded that the more intense the physical activity, such as running and stair climbing, the greater the impact on the increase in hip contact stress values. However, the reviewed studies vary in their methods. This finding suggested that this area is not well investigated and warrants future research.

  20. Prakash I, Bunders C, Devkota KP, Charan RD, Ramirez C, Snyder TM, et al.
    Molecules, 2014 Oct 28;19(11):17345-55.
    PMID: 25353385 DOI: 10.3390/molecules191117345
    To supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage. We utilized 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY and NOESY) and mass spectral data to fully characterize rebaudioside I.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links