OBJECTIVES: To evaluate all randomized controlled trials (RCTs) that have assessed strategies for treatment and prevention of heavy menstrual bleeding or pain associated with IUD use, for example, pharmacotherapy and alternative therapies.
SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase and CINAHL to January 2021.
SELECTION CRITERIA: We included RCTs in any language that tested strategies for treatment or prevention of heavy menstrual bleeding or pain associated with IUD (Cu IUD, LNG IUD or other IUD) use. The comparison could be no intervention, placebo or another active intervention.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and risk of bias, and extracted data. Primary outcomes were volume of menstrual blood loss, duration of menstruation and painful menstruation. We used a random-effects model in all meta-analyses. Review authors assessed the certainty of evidence using GRADE.
MAIN RESULTS: This review includes 21 trials involving 3689 participants from middle- and high-income countries. Women were 18 to 45 years old and either already using an IUD or had just had one placed for contraception. The included trials examined NSAIDs and other interventions. Eleven were treatment trials, of these seven were on users of the Cu IUD, one on LNG IUD and three on an unknown type. Ten were prevention trials, six focused on Cu IUD users, and four on LNG IUD users. Sixteen trials had high risk of detection bias due to subjective assessment of pain and bleeding. Treatment of heavy menstrual bleeding Cu IUD Vitamin B1 resulted in fewer pads used per day (mean difference (MD) -7.00, 95% confidence interval (CI) -8.50 to -5.50) and fewer bleeding days (MD -2.00, 95% CI -2.38 to -1.62; 1 trial; 110 women; low-certainty evidence) compared to placebo. The evidence is very uncertain about the effect of naproxen on the volume of menstruation compared to placebo (odds ratio (OR) 0.09, 95% CI 0.00 to 1.78; 1 trial, 40 women; very low-certainty evidence). Treatment with mefenamic acid resulted in less volume of blood loss compared to tranexamic acid (MD -64.26, 95% CI -105.65 to -22.87; 1 trial, 94 women; low-certainty evidence). However, there was no difference in duration of bleeding with treatment of mefenamic acid or tranexamic acid (MD 0.08 days, 95% CI -0.27 to 0.42, 2 trials, 152 women; low-certainty evidence). LNG IUD The use of ulipristal acetate in LNG IUD may not reduce the number of bleeding days in 90 days in comparison to placebo (MD -9.30 days, 95% CI -26.76 to 8.16; 1 trial, 24 women; low-certainty evidence). Unknown IUD type Mefenamic acid may not reduce volume of bleeding compared to Vitex agnus measured by pictorial blood assessment chart (MD -2.40, 95% CI -13.77 to 8.97; 1 trial; 84 women; low-certainty evidence). Treatment of pain Cu IUD Treatment with tranexamic acid and sodium diclofenac may result in little or no difference in the occurrence of pain (OR 1.00, 95% CI 0.06 to 17.25; 1 trial, 38 women; very low-certainty evidence). Unknown IUD type Naproxen may reduce pain (MD 4.10, 95% CI 0.91 to 7.29; 1 trial, 33 women; low-certainty evidence). Prevention of heavy menstrual bleeding Cu IUD We found very low-certainty evidence that tolfenamic acid may prevent heavy bleeding compared to placebo (OR 0.54, 95% CI 0.34 to 0.85; 1 trial, 310 women). There was no difference between ibuprofen and placebo in blood volume reduction (MD -14.11, 95% CI -36.04 to 7.82) and duration of bleeding (MD -0.2 days, 95% CI -1.40 to 1.0; 1 trial, 28 women, low-certainty evidence). Aspirin may not prevent heavy bleeding in comparison to paracetamol (MD -0.30, 95% CI -26.16 to 25.56; 1 trial, 20 women; very low-certainty evidence). LNG IUD Ulipristal acetate may increase the percentage of bleeding days compared to placebo (MD 9.50, 95% CI 1.48 to 17.52; 1 trial, 118 women; low-certainty evidence). There were insufficient data for analysis in a single trial comparing mifepristone and vitamin B. There were insufficient data for analysis in the single trial comparing tranexamic acid and mefenamic acid and in another trial comparing naproxen with estradiol. Prevention of pain Cu IUD There was low-certainty evidence that tolfenamic acid may not be effective to prevent painful menstruation compared to placebo (OR 0.71, 95% CI 0.44 to 1.14; 1 trial, 310 women). Ibuprofen may not reduce menstrual cramps compared to placebo (OR 1.00, 95% CI 0.11 to 8.95; 1 trial, 20 women, low-certainty evidence).
AUTHORS' CONCLUSIONS: Findings from this review should be interpreted with caution due to low- and very low-certainty evidence. Included trials were limited; the majority of the evidence was derived from single trials with few participants. Further research requires larger trials and improved trial reporting. The use of vitamin B1 and mefenamic acid to treat heavy menstruation and tolfenamic acid to prevent heavy menstruation associated with Cu IUD should be investigated. More trials are needed to generate evidence for the treatment and prevention of heavy and painful menstruation associated with LNG IUD.
RESULTS: The amount of total phenolics was estimated to be 70.83 mg Gallic Acid Equivalent (GAE) per gram of dry extract. The antioxidant activity of the L. edodes extract was 39.0% at a concentration of 1 mg/mL and was also concentration dependant, with an EC(50) value of 4.4 mg/mL. Different groups of animals (Wister albino mice) were administered paracetamol (1 g/kg, p.o.). L. edodes extract at a dose of 200 mg/kg was administered to the paracetamol treated mice for seven days. The effects of L. edodes extract on serum transaminases (SGOT, SGPT), alkaline phosphatase (ALP) and bilirubin were measured in the paracetamol-induced hepatotoxic mice. L. edodes extract produced significant (p < 0.05) hepatoprotective effects by decreasing the activity of serum enzymes and bilirubin.
CONCLUSIONS: From these results, it was suggested that L. edodes extract could perhaps protect liver cells from paracetamol-induced liver damage by its antioxidative effect on hepatocytes, hence diminishing or eliminating the harmful effects of toxic metabolites of paracetamol.
METHODS: PACKNOW is a two-arm, open-label randomised controlled trial of adjunctive paracetamol versus no paracetamol in patients aged ≥ 5 years with knowlesi malaria, conducted over a 2-year period at four hospital sites in Sabah, Malaysia. The primary endpoint of change in creatinine from enrolment to 72 h will be evaluated by analysis of covariance (ANCOVA) using enrolment creatinine as a covariate. Secondary endpoints include longitudinal changes in markers of oxidative stress (plasma F2-isoprostanes and isofurans) and markers of endothelial activation/Weibel-Palade body release (angiopoietin-2, von Willebrand Factor, P-selectin, osteoprotegerin) over 72 h, as well as blood and urine biomarkers of AKI. This study will be powered to detect a difference between the two treatment arms in a clinically relevant population including adults and children with knowlesi malaria of any severity.
DISCUSSION: Paracetamol is widely available and has an excellent safety profile; if a renoprotective effect is demonstrated, this trial will support the administration of regularly dosed paracetamol to all patients with knowlesi malaria. The secondary outcomes in this study will provide further insights into the pathophysiology of haemolysis-induced oxidative damage and acute kidney injury in knowlesi malaria and other haemolytic diseases.
TRIAL REGISTRATION: Clinicaltrials.gov, NCT03056391 . Registered on 12 October 2016.
AIMS: To investigate the effect of intraperitoneal administration of ondansetron for postoperative pain management as an adjuvant to intravenous acetaminophen in patients undergoing laparoscopic cholecystectomy.
METHODS: Patients scheduled for elective laparoscopic cholecystectomy were randomized into two groups (n = 25 each) to receive either intraperitoneal ondansetron or saline injected in the gall bladder bed at the end of the procedure. The primary outcome was the difference in pain from baseline to 24-h post-operative assessed by comparing the area under the curve of visual analog score between the two groups.
RESULTS: The derived area under response curve of visual analog scores in the ondansetron group (735.8 ± 418.3) was 33.97% lower than (p = 0.005) that calculated for the control group (1114.4 ± 423.9). The need for rescue analgesia was significantly lower in the ondansetron (16%) versus in the control group (54.17%) (p = 0.005), indicating better pain control. The correlation between the time for unassisted mobilization and the area under response curve of visual analog scores signified the positive analgesic influence of ondansetron (rs =0.315, p = 0.028). The frequency of nausea and vomiting was significantly lower in patients who received ondansetron than that reported in the control group (p = 0.023 (8 h), and 0.016 (24 h) respectively).
CONCLUSIONS: The added positive impact of ondansetron on postoperative pain control alongside its anti-emetic effect made it a unique novel option for patients undergoing laparoscopic cholecystectomy.
METHODS: A group of mice (n = 5) treated orally with a single dose (5000 mg/kg) of MEDL was first subjected to the acute toxicity study using the OECD 420 model. In the hepatoprotective study, six groups of rats (n = 6) were used and each received as follows: Group 1 (normal control; pretreated with 10% DMSO (extract's vehicle) followed by treatment with 10% DMSO (hepatotoxin's vehicle) (10% DMSO +10% DMSO)), Group 2 (hepatotoxic control; 10% DMSO +3 g/kg APAP (hepatotoxin)), Group 3 (positive control; 200 mg/kg silymarin +3 g/kg APAP), Group 4 (50 mg/kg MEDL +3 g/kg APAP), Group 5 (250 mg/kg MEDL +3 g/kg APAP) or Group 6 (500 mg/kg MEDL +3 g/kg APAP). The test solutions pre-treatment were made orally once daily for 7 consecutive days, and 1 h after the last test solutions administration (on Day 7th), the rats were treated with vehicle or APAP. Blood were collected from those treated rats for biochemical analyses, which were then euthanized to collect their liver for endogenous antioxidant enzymes determination and histopathological examination. The extract was also subjected to in vitro anti-inflammatory investigation and, HPLC and GCMS analyses.
RESULTS: Pre-treatment of rats (Group 2) with 10% DMSO failed to attenuate the toxic effect of APAP on the liver as seen under the microscopic examination. This observation was supported by the significant (p
METHODS: Mice were injected with 250 mg/kg body weight acetaminophen for 7 days and were treated with distilled water (untreated), Silybin (positive control) and coconut water vinegar (0.08 mL/kg and 2 mL/kg body weight). Level of oxidation stress and inflammation among treated and untreated mice were compared.
RESULTS: Untreated mice oral administrated with acetaminophen were observed with elevation of serum liver profiles, liver histological changes, high level of cytochrome P450 2E1, reduced level of liver antioxidant and increased level of inflammatory related markers indicating liver damage. On the other hand, acetaminophen challenged mice treated with 14 days of coconut water vinegar were recorded with reduction of serum liver profiles, improved liver histology, restored liver antioxidant, reduction of liver inflammation and decreased level of liver cytochrome P450 2E1 in dosage dependent level.
CONCLUSION: Coconut water vinegar has helped to attenuate acetaminophen-induced liver damage by restoring antioxidant activity and suppression of inflammation.
METHODS: Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed.
RESULTS: Ibuprofen halved sunitinib plasma concentration in female mice (p