Displaying publications 81 - 100 of 469 in total

Abstract:
Sort:
  1. Sasnila Pakpahan, Bambang Wispriyono, Budi Hartono, Juliana Jalaludin
    MyJurnal
    Introduction: School environment represents an important microenvironment for students who spend 6-8 hours in classrooms. Indoor air quality is linked to several respiratory diseases in the school age group. This research aims to study indoor air quality of schools at different environmental characteristic and assess its health risks to students. Methods: This research measured air quality (PM2.5, PM10, CO2 , and HCHO) in three junior high schools and followed by health risk assessment. Results: This research found that the mean or median level of indoor PM2.5 and PM10 in all three schools exceeded the standard value with health risks (HQ> 1) for PM2.5 in all three schools and PM10 in two schools. Whereas carbon dioxide and formaldehyde concentrations were still safe and did not inflict health risks (HQ < 1). The scenario for managing the health risk of PM2.5 and PM10 exposure was to control the exposure at a safe threshold of PM2.5 0.035 mg/m3 ; 0.043 mg/m3 and PM10 0.144 mg/m3 for most of the population at normal school time. Conclusion: It was concluded that the level of indoor particulate matters indicates poor indoor air quality in all three schools at different environmental characteristic and inflicts health risk on students so that the health risk management is required.
    Matched MeSH terms: Air Pollution; Air Pollution, Indoor
  2. Salamone F, Belussi L, Danza L, Galanos T, Ghellere M, Meroni I
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471398 DOI: 10.3390/s17051021
    The article describes the results of the project "open source smart lamp" aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ) of the built environment. A first version of this smart object, built following a do-it-yourself (DIY) approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ), by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ), indoor lighting quality (ILQ) and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.
    Matched MeSH terms: Air Conditioning; Air Pollution, Indoor
  3. Thiruchelvam L, Dass SC, Zaki R, Yahya A, Asirvadam VS
    Geospat Health, 2018 05 07;13(1):613.
    PMID: 29772882 DOI: 10.4081/gh.2018.613
    This study investigated the potential relationship between dengue cases and air quality - as measured by the Air Pollution Index (API) for five zones in the state of Selangor, Malaysia. Dengue case patterns can be learned using prediction models based on feedback (lagged terms). However, the question whether air quality affects dengue cases is still not thoroughly investigated based on such feedback models. This work developed dengue prediction models using the autoregressive integrated moving average (ARIMA) and ARIMA with an exogeneous variable (ARIMAX) time series methodologies with API as the exogeneous variable. The Box Jenkins approach based on maximum likelihood was used for analysis as it gives effective model estimates and prediction. Three stages of model comparison were carried out for each zone: first with ARIMA models without API, then ARIMAX models with API data from the API station for that zone and finally, ARIMAX models with API data from the zone and spatially neighbouring zones. Bayesian Information Criterion (BIC) gives goodness-of-fit versus parsimony comparisons between all elicited models. Our study found that ARIMA models, with the lowest BIC value, outperformed the rest in all five zones. The BIC values for the zone of Kuala Selangor were -800.66, -796.22, and -790.5229, respectively, for ARIMA only, ARIMAX with single API component and ARIMAX with API components from its zone and spatially neighbouring zones. Therefore, we concluded that API levels, either temporally for each zone or spatio- temporally based on neighbouring zones, do not have a significant effect on dengue cases.
    Matched MeSH terms: Air Pollutants/analysis*
  4. Wijedasa LS, Sloan S, Page SE, Clements GR, Lupascu M, Evans TA
    Glob Chang Biol, 2018 10;24(10):4598-4613.
    PMID: 29855120 DOI: 10.1111/gcb.14340
    Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)-related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South-East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46-6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep-peat areas will contribute 51% (4.43-11.45 GtCO2 ) of projected future peatland CO2 emissions over the period 2010-2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%-2.3% (5.14-14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%-48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land-use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.
    Matched MeSH terms: Air Pollutants*
  5. Shoffian Amin Jaafar, Suhaily Amran, Mohd Norhafsham Maghpor, Ahmad Sayuti Zainal, Nurzuhairah Jamil, Naemah Tajul Arus, et al.
    MyJurnal
    Indoor air quality is a term which refers to the air quality in and around buildings and structures, in which it
    is related to the health and comfort of those who are in the building. The study aims to identify the relationship
    between environmental factors with microbe growth by investigating the concentration of airborne bacteria and
    fungi at National Institute of Occupational Safety and Health (NIOSH) and to determine whether indoor bacteria and
    fungi concentration were associated with environmental factors such as temperature relative humidity and carbon
    dioxide concentration. This research was conducted concurrently with indoor air quality sampling as per requirement
    under the Malaysian Code of Practice of Indoor Air Quality (COP IAQ). The COP IAQ requires minimum of one
    sample to be taken from each area. If an area consists of a few separated rooms, each room is sampled and measured
    independently. Also this approach was used to determine whether there is a difference of indoor bacteria and fungi
    in different microenvironments. Results show that there is a significant correlation between humidity and bacteria
    concentration and fungi concentration; and between temperature and bacteria concentration. However, there is no
    significant correlation between temperature and fungi concentration. This study has also established significant
    difference on bacteria concentration and fungi concentration between microenvironments.
    Matched MeSH terms: Air Pollution; Air Pollution, Indoor
  6. Sakai N, Yamamoto S, Matsui Y, Khan MF, Latif MT, Ali Mohd M, et al.
    Sci Total Environ, 2017 May 15;586:1279-1286.
    PMID: 28236484 DOI: 10.1016/j.scitotenv.2017.02.139
    Volatile Organic Compounds (VOCs) in indoor air were investigated at 39 private residences in Selangor State, Malaysia to characterize the indoor air quality and to identify pollution sources. Twenty-two VOCs including isomers (14 aldehydes, 5 aromatic hydrocarbons, acetone, trichloroethylene and tetrachloroethylene) were collected by 2 passive samplers for 24h and quantitated using high performance liquid chromatography and gas chromatography mass spectrometry. Source profiling based on benzene/toluene ratio as well as statistical analysis (cluster analysis, bivariate correlation analysis and principal component analysis) was performed to identify pollution sources of the detected VOCs. The VOCs concentrations were compared with regulatory limits of air quality guidelines in WHO/EU, the US, Canada and Japan to clarify the potential health risks to the residents. The 39 residences were classified into 2 groups and 2 ungrouped residences based on the dendrogram in the cluster analysis. Group 1 (n=30) had mainly toluene (6.87±2.19μg/m3), formaldehyde (16.0±10.1μg/m3), acetaldehyde (5.35±4.57μg/m3) and acetone (11.1±5.95μg/m3) at background levels. Group 2 (n=7) had significantly high values of formaldehyde (99.3±10.7μg/m3) and acetone (35.8±12.6μg/m3), and a tendency to have higher values of acetaldehyde (23.7±13.5μg/m3), butyraldehyde (3.35±0.41μg/m3) and isovaleraldehyde (2.30±0.39μg/m3). The 2 ungrouped residences showed particularly high concentrations of BTX (benzene, toluene and xylene: 235μg/m3 in total) or acetone (133μg/m3). The geometric mean value of formaldehyde (19.2μg/m3) exceeded an 8-hour regulatory limit in Canada (9μg/m3), while those in other compounds did not exceed any regulatory limits, although a few residences exceeded at least one regulatory limit of benzene or acetaldehyde. Thus, the VOCs in the private residences were effectively characterized from the limited number of monitoring, and the potential health risks of the VOCs exposure, particularly formaldehyde, should be considered in the study area.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  7. Jabal MH, Abdulmunem AR, Abd HS
    J Air Waste Manag Assoc, 2019 01;69(1):109-118.
    PMID: 30215577 DOI: 10.1080/10962247.2018.1523070
    Plant (vegetable) oil has been evaluated as a substitute for mineral oil-based lubricants because of its natural and environmentally friendly characteristics. Availability of vegetable oil makes it a renewable source of bio-oils. Additionally, vegetable oil-based lubricants have shown potential for reducing hydrocarbon and carbon dioxide (CO2) emissions when utilized in internal combustion (IC) engines and industrial operations. In this study, sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and the exhaust emissions were tested using a four-stroke, single-cylinder diesel engine. All experimental works conformed to American Society for Testing and Materials standard (ASTM D4172-B). Under low loads, sunflower oil showed adequate tribological characteristics (antifriction and antiwear) compared with petroleum oil samples. The results also demonstrated that the sunflower oil-based lubricant was more effective in reducing the emission levels of carbon monoxide (CO), CO2, and hydrocarbons under different test conditions. Therefore, sunflower oil has the potential to be used as lubricant of mating components.Implications: An experimental investigation of the characteristics of nonedible sunflower oil tribological behaviors and potential as a renewable source for biofluids alternative to the petroleum oils was carried out. The level of emissions of a four-stroke, single-cylinder diesel engine using sunflower oil as a biolubricant was evaluated.
    Matched MeSH terms: Air Pollutants/analysis*
  8. Anwar A, Liew J, Othman M, Latif M
    Sains Malaysiana, 2010;39:169-174.
    Biomass burning is one of the main sources of air pollution in South East Asia, predominantly during the dry period between June and October each year. Sumatra and Kalimantan, Indonesia, have been identified as the regions connected to biomass burning due to their involvement in agricultural activities. In Sumatra, the Province of Riau has always been found to have had the highest number of hotspots during haze episodes. This study aims to determine the concentration of five major pollutants (PM10, SO2, NO2, CO and O3) in Riau, Indonesia, for 2006 and 2007. It will also correlate the level of air pollutants to the number of hotspots recorded, using the hotspot information system introduced by the Malaysian Centre for Remote Sensing (MACRES). Overall, the concentration of air pollutants recorded was found to increase with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode is significantly different when compared to its concentration in non-haze conditions. In fact, in August 2006, when the highest number of hotspots was recorded the concentration of PM10 was found to increase by more than 20% from its normal concentration. The dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), showed that the distribution of PM10 was greatly influenced by the wind direction. Furthermore, the particles had the capacity to reach the Peninsular Malaysia within 42 hours of emission from the point sources as a consequence of the South West monsoon.
    Matched MeSH terms: Air Pollutants; Air Pollution
  9. Ling OHL, Siti Nur Afiqah Mohamed Musthafa, Abdul Rauf Abdul Rasam
    Sains Malaysiana, 2014;43:1405-1414.
    Environmental health in general is referring to the aspect of concern on healthy environment, and the interrelations between environment and human health. Due to the urbanization, urban development is changing the natural environment into a man-made environment. Along with the process, level of environmental quality and human health are decreased. Air quality as reference shows that urban ambient air is more polluted than rural. Due to high density of human population and their activities in urban areas, it produces air pollutants with higher rate as compared to less-developed areas. Air pollutants contribute to various health problems. People suffering from respiratory diseases are the most likely to be affected by air pollution. This paper aimed to examine the rate of respiratory infection among residents in an urban growth corridor (Petaling Jaya-Shah Alam-Klang) and the relationship with the urban land uses, traffic volume and air quality. There were four major types of data used in this study i.e., respiratory infection of the respondents, air quality, land use and traffic volume. A health questionnaire survey was carried out besides the secondary data collection from the various government departments. Relationship analysis was performed between respiratory health and the urban factors (air quality, traffic volume and land uses). The study found out that the relationship between the respiratory health and the urban factors is different in city-wide land use and traffic factors, as compared to the localised air quality and land use factors. To conclude, the urban factors are potentially affecting the respiratory health.
    Matched MeSH terms: Air Pollutants; Air Pollution
  10. Adelin Anwar, Liew J, Mohd Talib Latif, Mohamed Rozali Othman
    Sains Malaysiana, 2010;39:169-174.
    Biomass burning is one of the main sources of air pollution in South East Asia, predominantly during the dry period between June and October each year. Sumatra and Kalimantan, Indonesia, have been identified as the regions connected to biomass burning due to their involvement in agricultural activities. In Sumatra, the Province of Riau has always been found to have had the highest number of hotspots during haze episodes. This study aims to determine the concentration of five major pollutants (PM10, SO2, NO2, CO and O3) in Riau, Indonesia, for 2006 and 2007. It will also correlate the level of air pollutants to the number of hotspots recorded, using the hotspot information system introduced by the Malaysian Centre for Remote Sensing (MACRES). Overall, the concentration of air pollutants recorded was found to increase with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode is significantly different when compared to its concentration in non-haze conditions. In fact, in August 2006, when the highest number of hotspots was recorded the concentration of PM10 was found to increase by more than 20% from its normal concentration. The dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), showed that the distribution of PM10 was greatly influenced by the wind direction. Furthermore, the particles had the capacity to reach the Peninsular Malaysia within 42 hours of emission from the point sources as a consequence of the South West monsoon.
    Matched MeSH terms: Air Pollutants; Air Pollution
  11. Ku Yusof KMK, Ismail SS, Azid A, Sani MSA, Isa NM, Mohamat Zawawi MZ
    Data Brief, 2020 Apr;29:105210.
    PMID: 32071985 DOI: 10.1016/j.dib.2020.105210
    This paper provides detail on sequence analysis of hazy days based on eight monitoring stations from three states (Kelantan, Terengganu and Pahang) in the eastern region of Peninsular Malaysia. The dataset comprises of 1502 daily mean hazy days that had been measured for a decade. The meteorology data namely wind speed, wind direction, air temperature, relative humidity and particulate matter (PM10) were used to comprehend the variability, and the relationship existed amongst variables. The final dataset consists of a summary descriptive analysis and a boxplot, where all five variables were involved, including the minimum, maximum, mean, 1st quartile, median, 3rd quartile and standard deviation are presented. Apart from descriptive analysis, the normality test and histogram were performed as well.
    Matched MeSH terms: Air Pollutants; Air Pollution
  12. Hamid HHA, Latif MT, Uning R, Nadzir MSM, Khan MF, Ta GC, et al.
    Environ Monit Assess, 2020 May 08;192(6):342.
    PMID: 32382809 DOI: 10.1007/s10661-020-08311-4
    Benzene, toluene, ethylbenzene and xylenes (BTEX) are well known hazardous volatile organic compounds (VOCs) due to their human health risks and photochemical effects. The main objective of this study was to estimate BTEX levels and evaluate interspecies ratios and ozone formation potentials (OFP) in the ambient air of urban Kuala Lumpur (KL) based on a passive sampling method with a Tenax® GR adsorbent tube. Analysis of BTEX was performed using a thermal desorption (TD)-gas chromatography mass spectrometer (GCMS). OFP was calculated based on the Maximum Incremental Reactivity (MIR). Results from this study showed that the average total BTEX during the sampling period was 66.06 ± 2.39 μg/m3. Toluene (27.70 ± 0.97 μg/m3) was the highest, followed by m,p-xylene (13.87 ± 0.36 μg/m3), o-xylene (11.49 ± 0.39 μg/m3), ethylbenzene (8.46 ± 0.34 μg/m3) and benzene (3.86 ± 0.31 μg/m3). The ratio of toluene to benzene (T:B) is > 7, suggesting that VOCs in the Kuala Lumpur urban environment are influenced by vehicle emissions and other anthropogenic sources. The average of ozone formation potential (OFP) value from BTEX was 278.42 ± 74.64 μg/m3 with toluene and xylenes being the major contributors to OFP. This study also indicated that the average of benzene concentration in KL was slightly lower than the European Union (EU)-recommended health limit value for benzene of 5 μg/m3 annual exposure.
    Matched MeSH terms: Air Pollutants*
  13. Yap HS, Roberts AC, Luo C, Tan Z, Lee EH, Thach TQ, et al.
    Indoor Air, 2021 11;31(6):2239-2251.
    PMID: 34096640 DOI: 10.1111/ina.12863
    Space is a resource that is constantly being depleted, especially in mega-cities. Underground workspaces (UGS) are increasingly being included in urban plans and have emerged as an essential component of vertical cities. While progress had been made on the engineering aspects associated with the development of high-quality UGS, public attitudes toward UGS as work environments (ie, the public's design concerns with UGS) are relatively unknown. Here, we present the first large-scale study examining preferences and attitudes toward UGS, surveying close to 2000 participants from four cities in three continents (Singapore, Shanghai, London, and Montreal). Contrary to previous beliefs, air quality (and not lack of windows) is the major concern of prospective occupants. Windows, temperature, and lighting emerged as additional important building performance aspects for UGS. Early adopters (ie, individuals more willing to accept UGS and thus more likely to be the first occupants) across all cities prioritized air quality. Present results suggest that (perceived) air quality is a key building performance aspect for UGS that needs to be communicated to prospective occupants as this will improve their attitudes and views toward UGS. This study highlights the importance of indoor air quality for the public.
    Matched MeSH terms: Air Pollution, Indoor*
  14. Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, et al.
    Semin Cancer Biol, 2022 Nov;86(Pt 3):1122-1142.
    PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013
    Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
    Matched MeSH terms: Air Pollution*
  15. Norlen Mohamed, Lokman Hakim Sulaiman, Thahirahtul Asma Zakaria, Anis Salwa Kamarudin, Daud Abdul Rahim
    Int J Public Health Res, 2016;6(1):685-694.
    MyJurnal
    Introduction During haze, at what level should Air Pollutant Index (API) showed, public
    or private school be closed is not without controversy and is very much
    debated. Therefore, the aim of this paper is to objectively quantify the
    potential inhaled dose of PM10 associated with exposure at school and home
    microenvironments during haze. The result of the health risk assessment will
    be used to propose the API level for closing the school during haze episode.

    Methods A hypothetical haze exposure scenario was created using the breakpoints of
    PM10 concentration for calculation of API and respective inhaled dose during
    haze. To determine the potential inhaled dose, we have considered many
    factors that include time spent for specific physical intensity at school and
    home microenvironments, age-specific and physical intensity-specific
    inhalation rate (m3/min), and the indoor/outdoor ratio of PM10. To calculate
    risk quotient (RQ), the inhaled dose was compared with the health reference
    dose computed based on the concentration of PM10 in the Malaysian
    Ambient Air Quality Standard.

    Results When considering the specific exposure at each microenvironment (school
    and home), the potential inhaled dose of PM10 was substantially lower when
    school is closed for both primary and secondary school. The calculated risk
    quotient (RQ) indicates that primary school children are likely to be affected
    at slightly lower PM10 concentration (equivalent to API of 197) as compared
    to secondary school children. Short duration of high physical activity
    intensity during school breaks has contributed to a large proportion of inhaled
    dose among school children indicating the important to avoid physical
    activities during haze.

    Conclusion Based on the assessment, taking into account the uncertainty of risk
    assessment methodology, we proposed school to be closed when API reach
    190 for both primary and secondary schools. These findings and
    recommendations are only valid for naturally ventilated school and applicable
    in the context of the current API calculation system and the existing
    Recommended Air Quality Guideline values in Malaysia.
    Matched MeSH terms: Air Pollutants; Air Pollution
  16. Rana MM, Sulaiman N, Sivertsen B, Khan MF, Nasreen S
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17393-403.
    PMID: 27230142 DOI: 10.1007/s11356-016-6950-4
    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.
    Matched MeSH terms: Air Pollutants/analysis*
  17. Low BS, Selvaraja KG, Ong TH, Ong KK, Koshy S
    Environ Sci Pollut Res Int, 2020 Aug;27(24):30419-30425.
    PMID: 32462616 DOI: 10.1007/s11356-020-09196-z
    Transboundary haze pollution caused by periodic forest fires has initiated a serious negative implication to the economy, tourism sectors and public health in Southeast Asia. Due to the raising concerns of health effects of haze towards the Malaysian population, the present study was conducted to investigate the degree of awareness towards haze and the number of safety measures adopted by the Malaysian population during the haze crisis based on demographic characteristics. A cross-sectional questionnaire-based study was conducted from 4 to 29 January 2016 on 387 subjects in Klang Valley, Malaysia. The results showed that more than 90% of the respondents were aware of the hazards of haze pollution. Respondents with higher education background with diploma, undergraduate and postgraduate degree possessed greater awareness on the hazards of haze (p RM 10,000/month) had higher awareness level on haze (p 
    Matched MeSH terms: Air Pollution*
  18. Rafindadi AA, Yusof Z, Zaman K, Kyophilavong P, Akhmat G
    Environ Sci Pollut Res Int, 2014 Oct;21(19):11395-400.
    PMID: 24898296 DOI: 10.1007/s11356-014-3095-1
    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.
    Matched MeSH terms: Air Pollution*
  19. Wang C, Qi F, Liu P, Ibrahim H, Wang X
    Environ Sci Pollut Res Int, 2023 Jun;30(30):75454-75468.
    PMID: 37219774 DOI: 10.1007/s11356-023-27742-3
    Under the new development model, the digital economy has become a new engine to promote the green development of the economy and achieve the goal of "double carbon." Based on panel data from 30 Chinese provinces and cities from 2011 to 2021, the impact of the digital economy on carbon emissions was empirically studied by constructing a panel model and a mediation model. The results show that firstly, the effect of the digital economy on carbon emissions is a non-linear inverted "U" shaped relationship, and this conclusion still holds after a series of robustness tests; secondly, the results of the benchmark regression show that economic agglomeration is an essential mechanism through which the digital economy affects carbon emissions and that the digital economy can indirectly suppress carbon emissions through economic agglomeration. Finally, the results of the heterogeneity analysis show that the impact of the digital economy on carbon emissions varies according to the level of regional development, and its effect on carbon emissions is mainly in the eastern region, while its impact on the central and western regions is weaker, indicating that the impact effect is primarily in developed regions. Therefore, the government should accelerate the construction of new digital infrastructure and implement the development strategy of the digital economy according to local conditions to promote a more significant carbon emission reduction effect of the digital economy.
    Matched MeSH terms: Air Pollution*
  20. Song J, He X, Zhang F, Wang W, Chan NW, Shi J, et al.
    PLoS One, 2024;19(10):e0312388.
    PMID: 39453961 DOI: 10.1371/journal.pone.0312388
    With the rapid economic development of Xinjiang Uygur Autonomous Region (Xinjiang), energy consumption became the primary source of carbon emissions. The growth trend in energy consumption and coal-dominated energy structure are unlikely to change significantly in the short term, meaning that carbon emissions are expected to continue rising. To clarify the changes in energy-related carbon emissions in Xinjiang over the past 15 years, this paper integrates DMSP/OLS and NPP/VIIRS data to generate long-term nighttime light remote sensing data from 2005 to 2020. The data is used to analyze the distribution characteristics of carbon emissions, spatial autocorrelation, frequency of changes, and the standard deviation ellipse. The results show that: (1) From 2005 to 2020, the total carbon emissions in Xinjiang continued to grow, with noticeable urban additions although the growth rate fluctuated. In spatial distribution, non-carbon emission areas were mainly located in the northwest; low-carbon emission areas mostly small and medium-sized towns; and high-carbon emission areas were concentrated around the provincial capital and urban agglomerations. (2) There were significant regional differences in carbon emissions, with clear spatial clustering of energy consumption. The clustering stabilized, showing distinct "high-high" and "low-low" patterns. (3) Carbon emissions in central urban areas remained stable, while higher frequencies of change were seen in the peripheral areas of provincial capitals and key cities. The center of carbon emissions shifted towards southeast but later showed a trend of moving northwest. (4) Temporal and spatial variations in carbon emissions were closely linked to energy consumption intensity, population size, and economic growth. These findings provided a basis for formulating differentiated carbon emission targets and strategies, optimizing energy structures, and promoting industrial transformation to achieve low-carbon economic development in Xinjiang.
    Matched MeSH terms: Air Pollutants/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links