Displaying publications 81 - 100 of 107 in total

Abstract:
Sort:
  1. Ismail S, Haris K, Abdul Ghani AR, Abdullah JM, Johan MF, Mohamed Yusoff AA
    J Asian Nat Prod Res, 2013 Sep;15(9):1003-12.
    PMID: 23869465 DOI: 10.1080/10286020.2013.818982
    Aloe emodin, one of the active compounds found in Aloe vera leaves, plays an important role in the regulation of cell growth and death. It has been reported to promote the anti-cancer effects in various cancer cells by inducing apoptosis. However, the mechanism of inducing apoptosis by this agent is poorly understood in glioma cells. This research is to investigate the apoptosis and cell cycle arrest inducing by aloe emodin on U87 human malignant glioma cells. Aloe emodin showed a time- and dose-dependent inhibition of U87 cells proliferation and decreased the percentage of viable U87 cells via the induction of apoptosis. Characteristic morphological changes, such as the formation of apoptotic bodies, were observed with confocal microscope by Annexin V-FITC/PI staining, supporting our viability study and flow cytometry analysis results. Our data also demonstrated that aloe emodin arrested the cell cycle in the S phase and promoted the loss of mitochondrial membrane potential in U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway.
    Matched MeSH terms: Cell Cycle/drug effects*
  2. Alitheen NB, Oon CL, Keong YS, Chuan TK, Li HK, Yong HW
    Pak J Pharm Sci, 2011 Jul;24(3):243-50.
    PMID: 21715255
    Cytotoxicity, the possible selective activity upon HL60 as well as the anti-proliferation effect of local health supplement wheatgrass and mixture of fibers were investigated in vitro using various cancerous cell line and normal blood cell culture. The IC(50) of wheatgrass-treated HL60 (17.5 ± 1.1, 12.5 ± 0.3, and 16 ± 0.5 microgram/ml for 24, 48 and 72 h, respectively) and fibers-treated HL60 (86.0 ± 5.5, 35.0 ± 2.5, and 52.5 ± 4.5 microgram/ml for 24, 48 and 72 h, respectively) showed that both extracts possessed optimum effect after 48 hours of treatment. No significant cytotoxic effect was observed on other type of cells. For trypan blue dye exclusion method, wheatgrass reduced the number of viable cells by 13.5% (±1.5), 47.1% (±3.6), and 64.9% (±2.7) after 24, 48 and 72 h exposure, respectively. Mixture of fibers reduced the number of viable cells by 36.4% (±2.3), 57.1% (±3.1), and 89.0% (±3.4) after 24, 48 and 72 h exposure, respectively, indicated that necrosis is also an alternative to the apoptotic mechanism of cell death. Annexin-V/propidium iodide staining revealed that both extracts induced apoptosis where early apoptosis had been detected concurrently with the reduction of percentage of cell viability. Cell cycle analysis revealed that in HL60, the percentage of apoptosis increased with time (wheatgrass: 16.0% ± 2.4, 45.3% ± 3.4 and 39.6% ± 4.1; mixture of fibers: 14.6% ± 1.8, 45.4% ± 2.3 and 45.9% ± 1.2) after exposure for 24, 48 and 72 h, respectively at the concentration of 100 microgram/ml and showed optimum effect at 48 hours. Thus, these health products can be a potential alternative supplement for leukaemia patients.
    Matched MeSH terms: Cell Cycle/drug effects
  3. Tang YQ, Jaganath IB, Sekaran SD
    PLoS One, 2010;5(9):e12644.
    PMID: 20838625 DOI: 10.1371/journal.pone.0012644
    Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells.
    Matched MeSH terms: Cell Cycle/drug effects*
  4. Ho K, Yazan LS, Ismail N, Ismail M
    Cancer Epidemiol, 2009 Aug;33(2):155-60.
    PMID: 19679064 DOI: 10.1016/j.canep.2009.06.003
    Vanillin is responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies showed that vanillin could enhance the repair of mutations and thus function as an anti-mutagen. However, its role in cancer, a disease that is closely related to mutation has not yet been fully elucidated.
    Matched MeSH terms: Cell Cycle/drug effects*
  5. Lim SH, Wu L, Burgess K, Lee HB
    Anticancer Drugs, 2009 Jul;20(6):461-8.
    PMID: 19387338 DOI: 10.1097/CAD.0b013e32832b7bee
    Conventional cytotoxic anticancer drugs that target all rapidly dividing cells are nonselective in their mechanism of action, because they disrupt essential components that are crucial to both malignant and proliferating normal cells. Instead, targeting cellular functions that are distinctly different between normal and cancer cells may provide a basis for selective killing of tumor cells. One such strategy that is still largely unexplored is to utilize the relatively higher negative mitochondrial membrane potential in carcinoma cells compared with adjacent normal epithelial cells to enhance accumulation and retention of cytotoxic lipophilic cations in the former. In this study, the anticancer activities of a new class of rosamines with cyclic amine substituents and their structure-activity relationships were investigated. From an in-vitro cell growth inhibition assay, 14 of the rosamines inhibited the growth of human leukemia HL-60 cells by 50% at micromolar or lower concentrations. Derivatives containing hydrophilic substituents had less potent activity, whereas aryl substitution at the meso position conferred extra activity with thiofuran and para-iodo aryl substitutions being the most potent. In addition, both compounds were at least 10-fold more cytotoxic than rhodamine 123 against a panel of cell lines of different tissue origin and similar to rhodamine 123, exhibited more cytotoxicity against cancer cells compared with immortalized normal epithelial cells of the same organ type. In subsequent experiments, the para-iodo aryl substituted rosamine was found to localize exclusively within the mitochondria and induced apoptosis as the major mode of cell death. Our results suggest that these compounds offer potential for the design of mitochondria-targeting agents that either directly kill or deliver cytotoxic drugs to selectively kill cancer cells.
    Matched MeSH terms: Cell Cycle/drug effects
  6. Ng CH, Kong KC, Von ST, Balraj P, Jensen P, Thirthagiri E, et al.
    Dalton Trans, 2008 Jan 28.
    PMID: 18185860 DOI: 10.1039/b709269e
    A series of ternary metal(ii) complexes {M(phen)(edda); 1a (Cu), 1b (Co), 1c (Zn), 1d (Ni); H(2)edda = N,N(')-ethylenediaminediacetic acid} of N,N'-ethylene-bridged diglycine and 1,10-phenanthroline were synthesized and characterized by elemental analysis, FTIR, UV-visible spectroscopy and magnetic susceptibility measurement. The interaction of these complexes with DNA was investigated using CD and EPR spectroscopy. MTT assay results of 1a-1c , screened on MCF-7 cancer cell lines, show that synergy between the metal and ligands results in significant enhancement of their antiproliferative properties. Preliminary results from apoptosis and cell cycle analyses with flow cytometry are reported. seems to be able to induce cell cycle arrest at G(0)/G(1). The crystal structure of 1a is also included.
    Matched MeSH terms: Cell Cycle/drug effects
  7. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, et al.
    Phytochemistry, 2007 Mar;68(6):904-12.
    PMID: 17234223
    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.
    Matched MeSH terms: Cell Cycle/drug effects
  8. Fatimah SS, Tan GC, Chua K, Tan AE, Nur Azurah AG, Hayati AR
    Burns, 2013 Aug;39(5):905-15.
    PMID: 23273814 DOI: 10.1016/j.burns.2012.10.019
    The aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20, 30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the stemness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression: CK3, CK18, CK19, Integrin-β1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes.
    Matched MeSH terms: Cell Cycle/drug effects
  9. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Canali R, Virgili F
    Ann N Y Acad Sci, 2004 Dec;1031:143-57.
    PMID: 15753141
    Vitamin E is important not only for its cellular antioxidant and lipid-lowering properties, but also as an antiproliferating agent. It has also been shown to contribute to immunoregulation, antibody production, and resistance to implanted tumors. It has recently been shown that tocotrienols are the components of vitamin E responsible for growth inhibition in human breast cancer cells in vitro as well as in vivo through estrogen-independent mechanisms. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. In order to investigate the molecular basis of the effect of a tocotrienol-rich fraction (TRF) from palm oil, we performed a cDNA array analysis of cancer-related gene expression in estrogen-dependent (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells. The human breast cancer cells were incubated with or without 8 mug/mL of tocotrienols for 72 h. RNA was subsequently extracted and subjected to reverse transcription before being hybridized onto cancer arrays. Tocotrienol supplementation modulated significantly 46 out of 1200 genes in MDA-MB-231 cells. In MCF-7 cells, tocotrienol administration was associated with a lower number of affected genes. Interestingly, only three were affected in a similar fashion in both cell lines: c-myc binding protein MM-1, 23-kDa highly basic protein, and interferon-inducible protein 9-27 (IFITM-1). These proteins are most likely involved in the cell cycle and can exert inhibitory effects on cell growth and differentiation of the tumor cell lines. These data suggest that tocotrienols are able to affect cell homeostasis, possibly independent of their antioxidant activity.
    Matched MeSH terms: Cell Cycle/drug effects
  10. Nordin N, Fadaeinasab M, Mohan S, Mohd Hashim N, Othman R, Karimian H, et al.
    PLoS One, 2016;11(5):e0154023.
    PMID: 27136097 DOI: 10.1371/journal.pone.0154023
    Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments.
    Matched MeSH terms: Cell Cycle/drug effects
  11. Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T
    Int J Med Sci, 2020;17(4):457-470.
    PMID: 32174776 DOI: 10.7150/ijms.38832
    Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
    Matched MeSH terms: Cell Cycle/drug effects
  12. Hitora Y, Takada K, Ise Y, Woo SP, Inoue S, Mori N, et al.
    Bioorg Med Chem, 2020 01 15;28(2):115233.
    PMID: 31848114 DOI: 10.1016/j.bmc.2019.115233
    New sesquiterpene quinones, metachromins X (1) and Y (2), together with the known metachromins C (3), J (4), and T (5), were isolated as inhibitors of cell cycle progression in the HeLa/Fucci2 cells. The structure of 1 was assigned by spectroscopic data and confirmed by a total synthesis. The planar structure of 2 was determined by interpretation of spectroscopic data, whereas its absolute configuration was analyzed by a combination of chiral HPLC and CD spectroscopy. Metachromins X (1) and C (3) arrested the cell cycle progression of HeLa/Fucci2 cells at S/G2/M phase.
    Matched MeSH terms: Cell Cycle/drug effects
  13. Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-Mahani SN, Janzamin E
    In Vitro Cell Dev Biol Anim, 2013 Aug;49(7):515-23.
    PMID: 23708920 DOI: 10.1007/s11626-013-9631-3
    Mesenchymal stem cells have been increasingly introduced to have great potential in regenerative medicine, immunotherapy, and gene therapy due to their unique properties of self-renewal and differentiation into multiple cell lineages. Studies have shown that these properties may be limited and changed by senescence-associated growth arrest under different culture conditions. This study aimed to present the ability of some growth factors on human umbilical cord mesenchymal (hUCM) cells expansion and telomerase activity. To optimize hUCM cell growth, epidermal growth factor (EGF) and fibroblast growth factor (FGF) were utilized in culture media, and the ability of these growth factors on the expression of the telomerase reverse transcriptase (TERT) gene and cell cycle phases was investigated. TERT mRNA expression increased in the hUCM cells treated by EGF and FGF. So, the untreated hUCM cells expressed 30.49 ± 7.15% of TERT, while EGF-treated cells expressed 51.82 ± 12.96% and FGF-treated cells expressed 33.77 ± 11.55% of TERT. Exposure of hUCM cells to EGF or FGF also promoted the progression of cells from G1 to S phase of the cell cycle and induced them to decrease the number of cells entering the G2/M phase. Our study showed that EGF and, to a lesser extent, FGF amplify the proliferation and expansion of hUCM cells.
    Matched MeSH terms: Cell Cycle/drug effects
  14. Tan YJ, Lee YT, Yeong KY, Petersen SH, Kono K, Tan SC, et al.
    Future Med Chem, 2018 Sep 01;10(17):2039-2057.
    PMID: 30066578 DOI: 10.4155/fmc-2018-0052
    AIM: This study aims to investigate the mode of action of a novel sirtuin inhibitor (BZD9L1) and its associated molecular pathways in colorectal cancer (CRC) cells.

    MATERIALS & METHODS: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways.

    RESULTS & CONCLUSION: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.

    Matched MeSH terms: Cell Cycle/drug effects
  15. Ali R, Alabsi AM, Ali AM, Ideris A, Omar AR, Yusoff K, et al.
    Neurochem Res, 2011 Nov;36(11):2051-62.
    PMID: 21671106 DOI: 10.1007/s11064-011-0529-8
    Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells. In this investigation, the cytotolytic properties of NDV strain AF2240 were evaluated on brain tumor cell line, anaplastic astrocytoma (U-87MG), by using MTT assay. Cytological observations were studied using fluorescence microscopy and transmission electron microscopy to show the apoptogenic features of NDV on U-87MG. DNA laddering in agarose gel electrophoresis and terminal deoxyribonucleotide transferase-mediated dUTP-X nick end-labeling staining assay confirmed that the mode of cell death was by apoptosis. However, analysis of the cellular DNA content by flowcytometery showed that there was a loss of treated U-87MG cells in all cell cycle phases (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Early apoptosis was observed 6 h post-inoculation by annexin-V flow-cytometry method. It could be concluded that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing of time and virus titer.
    Matched MeSH terms: Cell Cycle/drug effects
  16. Dinh TN, Parat MO, Ong YS, Khaw KY
    Pharmacol Res, 2021 07;169:105666.
    PMID: 33989764 DOI: 10.1016/j.phrs.2021.105666
    Benzyl isothiocyanate (BITC) is one of the common isothiocyanates found in cruciferous vegetables such as broccoli, cabbage or watercress. Preclinical studies report of its effectiveness in the prevention and treatment against several cancers. This review aims to report and discuss findings on anticancer activities of BITC and its modes of action against 14 types of cancer. A literature search was conducted using the keywords "BITC" and "anticancer" from PubMed, Google Scholar and CINAHL Plus to obtain relevant research articles. This review highlights the anticancer efficacy of BITC through modulation of various signaling pathways involved in apoptosis, cell proliferation, cell cycle arrest, metastasis, angiogenesis, autophagy and the effects of BITC in combination with other drugs. With the available pharmacology evidence, we conclude that further studies are needed to validate its effectiveness in humans for further development and translation into prophylaxis or therapy by promoting optimal therapeutic effects and minimizing toxicity in cancer treatment.
    Matched MeSH terms: Cell Cycle/drug effects
  17. Jaudan A, Sharma S, Malek SNA, Dixit A
    PLoS One, 2018;13(2):e0191523.
    PMID: 29420562 DOI: 10.1371/journal.pone.0191523
    Pinostrobin (PN) is a naturally occurring dietary bioflavonoid, found in various medicinal herbs/plants. Though anti-cancer potential of many such similar constituents has been demonstrated, critical biochemical targets and exact mechanism for their apoptosis-inducing actions have not been fully elucidated. The present study was aimed to investigate if PN induced apoptosis in cervical cancer cells (HeLa) of human origin. It is demonstrated that PN at increasing dose effectivity reduced the cell viability as well as GSH and NO2- levels. Condensed nuclei with fragmented chromatin and changes in mitochondrial matrix morphology clearly indicated the role of mitochondria in PN induced apoptosis. A marked reduction in mitochondrial membrane potential and increased ROS production after PN treatment showed involvement of free radicals, which in turn further augment ROS levels. PN treatment resulted in DNA damage, which could have been triggered by an increase in ROS levels. Decrease in apoptotic cells in the presence of caspase 3 inhibitor in PN-treated cells suggested that PN induced apoptosis via caspase dependent pathways. Additionally, a significant increase in the expression of proteins of extrinsic (TRAIL R1/DR4, TRAIL R2/DR5, TNF RI/TNFRSF1A, FADD, Fas/TNFRSF6) and intrinsic pathway (Bad, Bax, HTRA2/Omi, SMAC/Diablo, cytochrome C, Pro-Caspase-3, Cleaved Caspase-3) was observed in the cells exposed to PN. Taken together, these observations suggest that PN efficiently induces apoptosis through ROS mediated extrinsic and intrinsic dependent signaling pathways, as well as ROS mediated mitochondrial damage in HeLa cells.
    Matched MeSH terms: Cell Cycle/drug effects
  18. Lee HB, Ho AS, Teo SH
    Cancer Chemother Pharmacol, 2006 Jul;58(1):91-8.
    PMID: 16211395
    Given that p53 is a tumor suppressor that plays a central role in the cellular response to DNA damage and that more than 50% of all cancers have mutated p53, the wider utility of photodynamic therapy (PDT) in the treatment of cancer will depend on an understanding of whether p53 status modulates response to PDT. In this study, we investigated the photosensitivity of isogenic cell lines that differ only in their p53 status to PDT using hypericin as the photosensitizer.
    Matched MeSH terms: Cell Cycle/drug effects
  19. Makpol S, Durani LW, Chua KH, Mohd Yusof YA, Ngah WZ
    J Biomed Biotechnol, 2011;2011:506171.
    PMID: 21541185 DOI: 10.1155/2011/506171
    This study determined the molecular mechanisms of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs). Primary culture of HDFs at various passages were incubated with 0.5 mg/mL TRF for 24 h. Telomere shortening with decreased telomerase activity was observed in senescent HDFs while the levels of damaged DNA and number of cells in G(0)/G(1) phase were increased and S phase cells were decreased. Incubation with TRF reversed the morphology of senescent HDFs to resemble that of young cells with decreased activity of SA-β-gal, damaged DNA, and cells in G(0)/G(1) phase while cells in the S phase were increased. Elongated telomere length and restoration of telomerase activity were observed in TRF-treated senescent HDFs. These findings confirmed the ability of tocotrienol-rich fraction in preventing HDFs cellular ageing by restoring telomere length and telomerase activity, reducing damaged DNA, and reversing cell cycle arrest associated with senescence.
    Matched MeSH terms: Cell Cycle/drug effects*
  20. Armania N, Yazan LS, Ismail IS, Foo JB, Tor YS, Ishak N, et al.
    Molecules, 2013;18(11):13320-39.
    PMID: 24172241 DOI: 10.3390/molecules181113320
    The present research was designed to evaluate the anticancer properties of Dillenia suffruticosa extract. Our focus was on the mode of cell death and cell cycle arrest induced in breast cancer cells by the active fractions (designated as D/F4, D/F5 and EA/P2) derived from chromatographic fractionation of D. suffruticosa extracts. The results showed that the active fractions are more cytotoxic towards MCF-7 (estrogen positive breast cancer cells) and MDA-MB-231 (estrogen negative breast cancer cells) as compared to other selected cancer cell lines that included HeLa, A459 and CaOV3. The induction of cell death through apoptosis by the active fractions on the breast cancer cells was confirmed by Annexin V-FITC and PI staining. Cell cycle analysis revealed that D/F4 and EA/P2 induced G2/M phase cell cycle arrest in MCF-7 cells. On the other hand, MDA-MB-231 cells treated with D/F4 and D/F5 accumulated in the sub-G1 phase without cell cycle arrest, suggesting the induction of cell death through apoptosis. The data suggest that the active fractions of D. suffruticosa extract eliminated breast cancer cells through induction of apoptosis and cell cycle arrest. The reason why MCF-7 was more sensitive towards the treatment than MDA-MB-231 remains unclear. This warrants further work, especially on the role of hormones in response towards cytotoxic agents. In addition, more studies on the mechanisms underlying the induction of apoptosis and cell cycle arrest by the plant extract also need to be carried out.
    Matched MeSH terms: Cell Cycle/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links