Displaying publications 81 - 100 of 190 in total

Abstract:
Sort:
  1. Setyawati MI, Kutty RV, Leong DT
    Small, 2016 Oct;12(40):5601-5611.
    PMID: 27571230 DOI: 10.1002/smll.201601669
    Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
    Matched MeSH terms: Cell Death/drug effects
  2. Razali FN, Sinniah SK, Hussin H, Zainal Abidin N, Shuib AS
    Int J Biol Macromol, 2016 Nov;92:185-193.
    PMID: 27365117 DOI: 10.1016/j.ijbiomac.2016.06.079
    A polysaccharide fraction from Solanum nigrum, SN-ppF3 was shown previously to have an immunomodulatory activity where it could possibly be used to enhance the host immune response in fighting cancer. The non-toxic SN-ppF3 was fed orally to breast tumor bearing-mice with concentrations of 250 and 500mg/kg for 10days. During the treatment period, size of the tumor and weight of the mice were monitored. At the end of the treatment, blood, tumor, spleen and thymus were harvested for physiological and immunological analyses. After the treatment, the tumor volume and tumor weight were significantly inhibited by 65% and 40%, respectively. Based on the histological observation, the treatment of SN-ppF3 resulted in the disruption of tumor cells morphology. The increase in infiltrating T cells, NK cells and macrophages were observed in tumor tissues of the treated mice, which partly explained the higher apoptosis tumor cells observed in the treated mice. Moreover, the level of TNF-α, IFN-γ and IL-4 were elevated, while the level of IL-6 was decreased significantly, in serum of the treated mice. These results suggested that tumor suppression mechanisms observed in SN-ppF3-treated mice were most probably due through enhancing the host immune response.
    Matched MeSH terms: Cell Death/drug effects
  3. Dashtdar H, Murali MR, Selvaratnam L, Balaji Raghavendran H, Suhaeb AM, Ahmad TS, et al.
    PeerJ, 2016;4:e1650.
    PMID: 26966647 DOI: 10.7717/peerj.1650
    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.
    Matched MeSH terms: Cell Death
  4. Kalra J, Kumar P, Majeed AB, Prakash A
    Pharmacol. Biochem. Behav., 2016 Jul-Aug;146-147:1-12.
    PMID: 27106205 DOI: 10.1016/j.pbb.2016.04.002
    Several lines of evidence indicate that beta amyloid (β-A) production, neurofibrillary tangles and neuroinflammation are interrelated in the pathogenesis of Alzheimer's disease (AD). AD is associated with enhanced β-A production and accumulation resulting in neuroinflammation probably via activation of lipoxygenase (LOX) and cyclooxygenase (COX) pathways. Therefore, the present study was designed to investigate the role of LOX and COX inhibitors (zafirlukast and valdecoxib) in amyloidogenesis in β-A1-42 oligomer induced experimental AD in rats. The behavioral activities were assessed using actophotometer, novel object recognition test (ORT), Morris water maze (MWM) followed by biochemical assessments, determination of proinflammatory cytokines and mediators (TNF-α, IL-1β and PGE2), β-A1-42 levels and histopathological analysis. ICV administration of β-A1-42 oligomer produced significant impairment in memory consolidation. In addition to this significant increase in mito-oxidative stress, neuroinflammatory markers, acetylcholinesterase (AChE) toxicity, β-A1-42 level, neuronal cell death and neuroinflammation are more profound in β-A1-42 oligomer treated AD rats. Administration of zafirlukast (15 and 30mg/kg), and valdecoxib (5 and 10mg/kg) significantly improved the behavioral performances and showed significant reversal of mito-oxidative damage declining the neuroinflammation in β-A1-42 oligomer treated rats. Furthermore, more profound effects were observed at the sub-therapeutic dose combination of zafirlukast (15mg/kg) and valdecoxib (5mg/kg). The results of the present study indicate that protective effects of zafirlukast and valdecoxib are achieved through the blockade of release of LOX and COX metabolites therefore, representing a new therapeutic target for treating AD and other neurodegenerative disorders.
    Matched MeSH terms: Cell Death/drug effects
  5. Tan, Toong Seng, Yap, Wei Boon, Sharifah Syed Hassan
    MyJurnal
    The occasional influenza pandemics and the seasonal influenza epidemics have destroyed millions of lives since
    the last century. It is therefore necessary to understand the virus replication patterns as this provides essential
    information on the virus infectivity, pathogenicity and spread patterns. This study aimed to investigate the replication
    of avian influenza A virus H5N1 (A/Chicken/Malaysia/5858/2004) in MDCK cells. In this study, the TCID50 (50% tissue
    culture infectious dose) of AIV H5N1 was first determined. The MDCK cells were then infected with AIV H5N1 at TCID50
    for 0-48 h. The CPE (cytopathic effect) was observed and cell death was determined hourly. The virus-infected cells
    and media were subsequently collected for gene analysis. The results showed that the TCID50 of AIV H5N1 was 10-9
    dilution. The CPE percentage showed a strong and positive correlation with the infection period (r = 1.0, n = 9, p <
    0.01). The amount of a highly conserved influenza viral gene, M2 gene amplified from infected media (r = 0.471, n =
    9, p= > 0.05) and infected cell (r = 0.73, n = 9, p < 0.05) were also positively correlated with the infection period. In
    conclusion, although CPE started to be observed in the early time points of infection, however, the M2 gene was only
    amplified from the infected media and cells after 48 h and 24 h, respectively. This signifies that AIV H5N1 used in this
    study is pathogenic and it is able to cause severe cytopathology to host cells even at low virus load.
    Matched MeSH terms: Cell Death
  6. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S
    Int J Nanomedicine, 2016;11:3417-34.
    PMID: 27555765 DOI: 10.2147/IJN.S112045
    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
    Matched MeSH terms: Cell Death/drug effects
  7. Tan XW, Bhave M, Fong AY, Matsuura E, Kobayashi K, Shen LH, et al.
    Oxid Med Cell Longev, 2016;2016:6943053.
    PMID: 27239253 DOI: 10.1155/2016/6943053
    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: "BJLN") and a commercial rice variety, "MR219," on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT.
    Matched MeSH terms: Cell Death/drug effects
  8. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Cell Death/drug effects
  9. Chung FF, Tan PF, Raja VJ, Tan BS, Lim KH, Kam TS, et al.
    Sci Rep, 2017 02 15;7:42504.
    PMID: 28198434 DOI: 10.1038/srep42504
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization.
    Matched MeSH terms: Cell Death/drug effects*
  10. Yogarajah T, Ong KC, Perera D, Wong KT
    Arch Virol, 2017 Mar;162(3):727-737.
    PMID: 27878462 DOI: 10.1007/s00705-016-3157-4
    Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are closely related enteroviruses that cause hand, foot and mouth disease (HFMD) in children. Serious neurological complications almost always occur in EV-A71 infection, but are rare in CV-A16 infection. Based on the hypothesis that this may be because EV-A71 infects neuronal cells more easily than CV-A16, we compared virus infection, replication and spread of EV-A71 and CV-A16 in SK-N-SH cells. We found that CV-A16 invariably showed significantly lower replication and caused less necrotic cell death in SK-N-SH cells, compared with EV-A71. This was not due to a lower proportion of CV-A16-infected cells, since both viruses showed similar proportions of infected cells at all time points analyzed. Furthermore, reduced replication of CV-A16 in SK-N-SH cells does not appear to be due to limited viral receptor availability, which might limit viral entry, because experiments with viral RNA-transfected cells showed the same results as for live virus infections. On the other hand, no differences were observed between EV-A71 and CV-A16 in RD cells and results were generally similar in RD cells for both viruses. Taken together, our findings suggest that the poor growth of CV-A16 and EV-A71in SK-N-SH cells, compared with RD cells, may be due to cell type-specific restrictions on viral replication and spread. Furthermore, the lower viral replication and necrotic cell death in CV-A16-infected SK-N-SH cells, compared with EV-A71-infected SK-N-SH cells, is consistent with the lower prevalence of neurotropism observed in CV-A16-associated HFMD outbreaks. Nonetheless, in vivo data and more extensive comparisons of different viral strains are essential to confirm our findings.
    Matched MeSH terms: Cell Death
  11. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgcell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.
    Matched MeSH terms: Cell Death/drug effects
  12. Zhang Y, Xu W, Guo H, Zhang Y, He Y, Lee SH, et al.
    Cancer Res, 2017 Apr 17.
    PMID: 28416482 DOI: 10.1158/0008-5472.CAN-16-1633
    Cancer stem-like cells (CSC) are thought to drive tumor initiation, metastasis, relapse and therapeutic resistance, but their specific pathogenic characters in many cancers including non-small cell lung cancer (NSCLC) have yet to be well defined. Here we develop findings that the growth factor HGF promotes CSC sphere formation in NSCLC cell populations. In patient-derived sphere-forming assays (PD-SFA) with HGF, CD49f and CD104 were defined as novel markers of lung CSC (LCSC). In particular, we isolated a subpopulation of CD166(+)CD49f(hi)CD104(-)Lin(-) LCSC present in all human specimens of NSCLC examined, regardless of their histological subtypes or genetic driver mutations. This specific cell population was tumorigenic and capable of self-renewal, giving rise to tumor spheres in vitro and orthotopic lung tumors in immune-compromised mice. Mechanistic investigations established that NOTCH1 was preferentially expressed in this cell subpopulation and required for self-renewal via the transcription factor HES1. Through a distinct HES1-independent pathway, NOTCH1 also protected LCSCs from cisplatin-induced cell death. Notably, treatment with a γ-secretase inhibitor that blunts NOTCH1 function ablated self-renewing LCSC activity and restored platinum sensitivity in vitro and in vivo Overall, our results define the pathogenic characters of a cancer stem-like subpopulation in lung cancer, the targeting of which may relieve platinum resistance in this disease.
    Matched MeSH terms: Cell Death
  13. Chatterjee J, Dai W, Aziz NHA, Teo PY, Wahba J, Phelps DL, et al.
    Clin Cancer Res, 2017 07 01;23(13):3453-3460.
    PMID: 27986748 DOI: 10.1158/1078-0432.CCR-16-2366
    Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer.Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses.Results: Biomarkers from the discovery cohort that associated with PD-L1+ cells were found. PD-L1+ CD14+ cells and PD-L1+ CD11c+ cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)-confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1+ and PD-L1+ CD14+ cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1+ expression on lymphocytes was associated with improved survival.Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti-PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453-60. ©2016 AACR.
    Matched MeSH terms: Programmed Cell Death 1 Receptor/blood*
  14. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
    Matched MeSH terms: Cell Death
  15. Ong KS, Cheow YL, Lee SM
    J Adv Res, 2017 Jul;8(4):393-398.
    PMID: 28580180 DOI: 10.1016/j.jare.2017.05.007
    The increase in prevalence of antimicrobial-resistant bacteria (ARB) is currently a serious threat, thus there is a need for new antimicrobial compounds to combat infections caused by these ARB. An antimicrobial-producing bacterium, Burkholderia paludis was recently isolated and was able to produce a type of siderophore with antimicrobial properties, later identified as pyochelin. The chelating ability of pyochelin has been well-characterized but not for its antimicrobial characteristics. It was found that pyochelin had MIC values (MBC values) of 3.13 µg/mL (6.26 µg/mL) and 6.26 µg/mL (25.00 µg/mL) against three Enterococcus strains and four Staphylococcus strains. Pyochelin was able to inhibit E. faecalis ATCC 700802 (a vancomycin-resistant strain) in a time and dose dependent manner via killing kinetics assay. It was demonstrated that pyochelin enhanced the production of intracellular reactive oxygen species (ROS) over time, which subsequently caused a significant increase in malondialdehyde (MDA) production (a marker for lipid peroxidation) and ultimately led to cell death by disrupting the integrity of the bacterial membrane (validated via BacLight assay). This study has revealed the mechanism of action of pyochelin as an antimicrobial agent for the first time and has shown that pyochelin might be able to combat infections caused by E. faecalis in the future.
    Matched MeSH terms: Cell Death
  16. Navanesan S, Abdul Wahab N, Manickam S, Cheow YL, Sim KS
    Chem Biol Interact, 2017 Aug 01;273:37-47.
    PMID: 28578903 DOI: 10.1016/j.cbi.2017.05.022
    The active isolate of LF1 in Leptospermum javanicum was further looked into its capabilities in provoking an apoptotic reaction and suppressing the metastasis process in treated non-small lung cancer cells. LF1 underwent isolation and purification to yield a white powder which was identified as Betulinic acid (BA) via NMR, LCMS and IR spectroscopy. The isolate, BA, which produced an encouraging cytotoxic effect against non-small lung cancer cells (A549 and NCI-H1299) through the MTT assay, was further assessed with TUNEL, Sub-G1 population quantification, acridine orange/ethidium bromide staining as well as activated caspase-3 detection. The results pointed towards the induction of apoptosis as a result of increasing doses of BA, regardless of the p53 status in both cell lines. Treatment with BA also prevented an effective attachment of the invasive A549 cells onto a new culture surface in addition to diminishing the migratory potential of treated cells across a porous membrane. Further investigation through the ELISA detection and gelatin zymography showed an adverse effect to production of matrix metalloproteinase-2 (MMP-2) while the levels of matrix metalloproteinase-9 (MMP-9) were not negatively affected. The findings from this study validate the potential of L. javanicum as a potential anti-cancer treatment as stated in our previous study. The isolate, BA not only showed a capacity in inducing apoptotic cell death in non-small lung cancer cells, but managed to distort the ability of the cancer cells in effectively undergoing the metastasis process.
    Matched MeSH terms: Cell Death/drug effects
  17. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Programmed Cell Death 1 Receptor/analysis*
  18. Tiash S, Kamaruzman NIB, Chowdhury EH
    Drug Deliv, 2017 Nov;24(1):1721-1730.
    PMID: 29119846 DOI: 10.1080/10717544.2017.1396385
    Cancer cells lose their control on cell cycle by numerous genetic and epigenetic alterations. In a tumor, these cells highly express growth factor receptors (GFRs), eliciting growth, and cell division. Among the GFRs, epidermal growth factor receptor-1 (EGFR1) (Her1/ERBB1) and epidermal growth factor receptor-2 (EGFR2) (Her2/ERBB2) from epidermal growth factor (EGF) family and insulin-like growth factor-1 receptor (IGF1R) are highly expressed on breast cancer cells, thus contributing to the aggressive growth and invasiveness, have been focused in this study. Moreover, overexpression of these receptors is related to suppression of cell death and conferring resistance against the classical drugs used to treat cancer nowadays. Therefore, silencing of these GFRs-encoding genes by using selective small interfering RNAs (siRNAs) could be a powerful approach to treat breast cancer. The inorganic pH sensitive carbonate apatite nanoparticles (NPs) were used as a nano-carrier to deliver siRNA(s) against single or multiple GFR genes in breast cancer cells as well as in a mouse model of breast carcinoma. Silencing of egfr1 and erbb2 simultaneously led to a reduction in cell viability with an increase in cell death signal in the cancer cells and regression of tumor growth in vivo.
    Matched MeSH terms: Cell Death/drug effects
  19. Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, et al.
    Tuberculosis (Edinb), 2017 12;107:38-47.
    PMID: 29050770 DOI: 10.1016/j.tube.2017.03.006
    Mycobacterium tuberculosis has a remarkable ability of long-term persistence despite vigorous host immunity and prolonged therapy. The bacteria persist in secure niches such as the mesenchymal stem cells in the bone marrow and reactivate the disease, leading to therapeutic failure. Many bacterial cells can remain latent within a diseased tissue so that their genetic material can be incorporated into the genetic material of the host tissue. This incorporated genetic material reproduces in a manner similar to that of cellular DNA. After the cell division, the incorporated gene is reproduced normally and distributed proportionately between the two progeny. This inherent adoption of long-term persistence and incorporating the bacterial genetic material into that of the host tissue remains and is considered imperative for microbial advancement and chemotherapeutic resistance; moreover, new evidence indicates that the bacteria might pass on genetic material to the host DNA sequence. Several studies focused on the survival mechanism of M. tuberculosis in the host immune system with the aim of helping the efforts to discover new drugs and vaccines against tuberculosis. This review explored the mechanisms through which this bacterium affects the expression of human genes. The first part of the review summarizes the current knowledge about the interactions between microbes and host microenvironment, with special reference to the M. tuberculosis neglected persistence in immune cells and stem cells. Then, we focused on how bacteria can affect human genes and their expression. Furthermore, we analyzed the literature base on the process of cell death during tuberculosis infection, giving particular emphasis to gene methylation as an inherited process in the neutralization of possibly injurious gene components in the genome. The final section discusses recent advances related to the M. tuberculosis interaction with host epigenetic circuitry.
    Matched MeSH terms: Cell Death
  20. Raja Nor Suhaila, Sabreena Safuan
    Sains Malaysiana, 2017;46:463-468.
    Human umbilical vein endothelial cell (HUVEC) isolated from umbilical cord is widely used as endothelial cell model.
    However, HUVEC has been characteristically hard to maintain and showed molecular heterogeneity depending on the
    umbilical cord donors. Commercial HUVEC is commonly derived from European and Caucasian population which have
    different molecular characteristics from Asian women. This study aimed to optimize the isolation and culture condition of
    HUVEC using combinations of growth factors and extracellular matrix components so that the isolated HUVEC will purely
    represent the population under study. Umbilical cords were obtained from women post-labour. Different incubation times
    and digestive enzymes were used during endothelial cells isolation process. The culture conditions were optimized based
    on the coating materials and the media supplements. The results showed that 0.1% collagenase for 40 min incubation
    was the optimal isolation condition of HUVEC. HUVEC grown in 0.2% gelatin coated plate with 10% heat-inactivated
    fetal calf serum showed higher proliferative capacity and reduced cell death compared to other conditions (p<0.05). The
    results generated from this study provide a basic protocol of HUVEC isolation and culture conditions in order to generate
    working endothelial cell populations purely represent the Malaysian population.
    Matched MeSH terms: Cell Death
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links