Displaying publications 81 - 100 of 3287 in total

Abstract:
Sort:
  1. Ude CC, Chen HC, Norhamdan MY, Azizi BM, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Sep;18(3):355-367.
    PMID: 28667462 DOI: 10.1007/s10561-017-9638-1
    In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell's chondrogenic induction.
    Matched MeSH terms: Bone Marrow Cells/cytology*; Bone Marrow Cells/metabolism; Cells, Cultured; Adult Stem Cells/cytology*; Adult Stem Cells/metabolism
  2. Ude CC, Seet WT, Sharen Aini S, Aminuddin BS, Ruszymah BHI
    Sci Rep, 2018 03 12;8(1):4345.
    PMID: 29531282 DOI: 10.1038/s41598-018-22748-1
    The study objectives include, enhancing the proliferations of aged bone marrow stem cells (BMSCs) and adipose stem cells (ADSCs); and evaluating the shelf lives of clinical grade chondrogenically induced cells from both samples. ADSCs and BMSCs from 56 patients (76 ± 8 yrs) were proliferated using basal medium (FD) and at (5, 10, 15, 20 and 25) ng/ml of basal fibroblast growth factor (bFGF). They were induced to chondrogenic lineage and stored for more than 120 hrs in FD, serum, Dulbecco's phosphate buffered saline (DPBS) and saline at 4 °C. In FD, cells stagnated and BMSCs' population doubling time (PDT) was 137 ± 30 hrs, while ADSCs' was 129.7 ± 40 hrs. bFGF caused PDT's decrease to 24.5 ± 5.8 hrs in BMSCs and 22.0 ± 6.5 hrs in ADSCs (p = 0.0001). Both cells were positive to stem cell markers before inductions and thereafter, expressed significantly high chondrogenic genes (p = 0.0001). On shelf life, both cells maintained viabilities and counts above 70% in FD and serum after 120 hrs. BMSCs' viabilities in DPBS fell below 70% after 96 hrs and saline after 72 hrs. ADSCs' viability fell below 70% in DPBS after 24 hrs and saline within 24 hrs. Concentrations between 20 ng/ml bFGF is ideal for aged adult cells' proliferation and delivery time of induced BMSCs and ADSCs can be 120 hrs in 4 °C serum.
    Matched MeSH terms: Bone Marrow Cells/physiology*; Cells, Cultured; Adult Stem Cells/physiology*; Mesenchymal Stromal Cells/physiology*
  3. Fariha MM, Chua KH, Tan GC, Tan AE, Hayati AR
    Cytotherapy, 2011 May;13(5):582-93.
    PMID: 21231803 DOI: 10.3109/14653249.2010.549121
    BACKGROUND AIMS: Fetal membrane from human placenta tissue has been described as a potential source of stem cells. Despite abundant literature on amnion stem cells, there are limited studies on the stem cell properties of chorion-derived stem cells.

    METHODS: The main aim was to determine the stemness properties of serial-passaged human chorion-derived stem cells (hCDSC). Quantitative polymerase chain reaction (PCR) was performed to reveal the following stemness gene expression in serial-passaged hCDSC: Oct-4, Sox-2, FGF-4, Rex-1, TERT, Nanog (3), Nestin, FZD-9, ABCG-2 and BST-1. Cell growth rate was evaluated from passage (P) 1 until P5. The colony-forming unit-fibroblast (CFU-F) frequency of P3 and P5 cells and multilineage differentiation potential of P5 cells were determined. The immunophenotype of hCDSC was compared using the surface markers CD9, CD31, CD34, CD44, CD45, CD73, CD90, CD117, HLA-ABC and HLA-DR, -DP and -DQ. Immunostaining for trophoblast markers was done on P0, P1, P3 and P5 cells to detect the contamination of trophoblasts in culture, while chromosomal abnormality was screened by cytogenetic analysis of P5 cells.

    RESULTS: The surface markers for mesenchymal lineage in hCDSC were more highly expressed at P5 compared with P3 and P0, indicating the increased purity of these stem cells after serial passage. Indeed, all the stemness genes except TERT were expressed at P1, P3 and P5 hCDSC. Furthermore, human chorion contained high clonogenic precursors with a 1:30 CFU-F frequency. Successful adipogenic, chondrogenic and osteogenic differentiation demonstrated the multilineage potential of hCDSC. The karyotyping analysis showed hCDSC maintained chromosomal stability after serial passage.

    CONCLUSIONS: hCDSC retain multipotent potential even at later passages, hence are a promising source for cell therapy in the future.

    Matched MeSH terms: Cells, Cultured; Multipotent Stem Cells/classification; Multipotent Stem Cells/cytology*; Multipotent Stem Cells/metabolism; Embryonic Stem Cells/classification; Embryonic Stem Cells/cytology*; Embryonic Stem Cells/metabolism
  4. Liau LL, Ruszymah BHI, Ng MH, Law JX
    Curr Res Transl Med, 2020 01;68(1):5-16.
    PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001
    Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
    Matched MeSH terms: Cells, Cultured; Embryonic Stem Cells/cytology; Adult Stem Cells/cytology; Induced Pluripotent Stem Cells/cytology; Mesenchymal Stromal Cells/cytology*
  5. Shaharuddin B, Ahmad S, Md Latar N, Ali S, Meeson A
    Stem Cells Transl Med, 2017 03;6(3):761-766.
    PMID: 28297580 DOI: 10.5966/sctm.2016-0175
    Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Stem Cells Translational Medicine 2017;6:761-766.
    Matched MeSH terms: Epithelial Cells/cytology; Epithelial Cells/metabolism; Stem Cells/cytology*; Stem Cells/metabolism; 3T3 Cells; Side-Population Cells/cytology
  6. Mamidi MK, Pal R, Mori NA, Arumugam G, Thrichelvam ST, Noor PJ, et al.
    J Cell Biochem, 2011 May;112(5):1353-63.
    PMID: 21337383 DOI: 10.1002/jcb.23052
    Among the different parameters governing the successful derivation and expansion of human embryonic stem cells (hESC), feeder layers play the most important role. Human feeders in form of human mesenchymal stromal cells (hMSCs) and human foreskin fibroblasts (HFFs) lay the foundation for eradication of animal-derived hESC culture system. In this study we explored the potential of human foreskin derived mesenchymal like stromal cells (HF-MSCs) to support self renewal and pluripotency of hESC. The MSCs isolated from human foreskin were found to be resistant to standard concentrations and duration of mitomycin-C treatment. Growth pattern, gene profiling (Oct-4, Nanog, Sox-2, Rex-1), cytoskeletal protein expression (vimentin, nestin) and tri-lineage differentiation potential into adipocytes, chondrocytes and osteocytes confirmed their mesenchymal stromal cell status. Further, the HF-MSCs were positive for CD105, CD166, CD73, CD44, CD90, SSEA-4, and negative for CD34, CD45, HLA-DR cell-surface markers and were found to exhibit BM-MSC-like characteristics. hESC lines co-cultured with HF-MSC feeders showed expression of expected pluripotent transcription factors Oct-4, Nanog, Sox-2, GDF-3, Rex-1, STELLAR, ABCG2, Dppa5, hTERT; surface markers SSEA-4, TRA-1-81 and maintained their cytogenetic stability during long term passaging. These novel feeders also improved the formation of embryoid bodies (EBs) from hESC which produced cell types representing three germ layers. This culture system has the potential to aid the development of clinical-grade hESCs for regenerative medicine and drug screening. Further, we envisage foreskin can serve as a valuable source of alternative MSCs for specific therapeutic applications.
    Matched MeSH terms: Stromal Cells/cytology; Stromal Cells/metabolism; Pluripotent Stem Cells/cytology*; Pluripotent Stem Cells/metabolism; Embryonic Stem Cells/cytology*; Embryonic Stem Cells/metabolism
  7. Gnanasegaran N, Govindasamy V, Musa S, Kasim NH
    Int J Med Sci, 2014;11(4):391-403.
    PMID: 24669199 DOI: 10.7150/ijms.7697
    Human adipose stem cells (ASCs) has been in the limelight since its discovery as a suitable source of mesenchymal stem cells (MSCs) in regenerative medicine. Currently, two major techniques are used to isolate ASCs, namely liposuction and tissue biopsy. These two methods are relatively risk-free but the question as to which method could give a more efficient output remains unclear. Thus, this study was carried out to compare and contrast the output generated in regards to growth kinetics, differentiation capabilities in vitro, and gene expression profiling. It was found that ASCs from both isolation methods were comparable in terms of growth kinetics and tri-lineage differentiation. Furthermore, ASCs from both populations were reported as CD44(+), CD73(+), CD90(+), CD166(+), CD34(-), CD45(-) and HLA-DR(-). However, in regards to gene expression, a group of overlapping genes as well as distinct genes were observed. Distinct gene expressions indicated that ASCs (liposuction) has endoderm lineage propensity whereas ASCs (biopsy) has a tendency towards mesoderm/ectoderm lineage. This information suggests involvement in different functional activity in accordance to isolation method. In conclusion, future studies to better understand these gene functions should be carried out in order to contribute in the applicability of each respective cells in regenerative therapy.
    Matched MeSH terms: Cells, Cultured; Stem Cells/cytology*; Mesenchymal Stromal Cells/cytology
  8. Ab Kadir R, Zainal Ariffin SH, Megat Abdul Wahab R, Kermani S, Senafi S
    ScientificWorldJournal, 2012;2012:843843.
    PMID: 22666162 DOI: 10.1100/2012/843843
    Unspecialized cells that can renew themselves and give rise to multiple differentiated cell types are termed stem cells. The objective of this study was to characterize and investigate, through molecular and biochemical analyses, the stemness of cells derived from isolated mononucleated cells that originated from peripheral blood. The isolated mononucleated cells were separated according to their physical characteristics (adherent and suspension), after 4 to 7 days into a 14-day culturing period in complete medium. Our results revealed that adherent and suspension cells were positive for mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) markers, respectively. Differentiation of adherent cells into osteoblasts was associated with expression of the OPN gene and increasing ALP enzyme activity, while differentiation of suspension cells into osteoclasts was associated with expression of the TRAP gene and increasing TRAP enzyme activity. In conclusion, molecular and biochemical analyses showed that mononucleated cells consist of MSC (adherent) and HSC (suspension), and both cell types are able to differentiate into specialized cells from their respective lineage: osteoblast (MSC) and osteoclast (HSC).
    Matched MeSH terms: Cells, Cultured; Hematopoietic Stem Cells/cytology; Mesenchymal Stromal Cells/cytology
  9. Alabsi AM, Bakar SA, Ali R, Omar AR, Bejo MH, Ideris A, et al.
    Int J Mol Sci, 2011;12(12):8645-60.
    PMID: 22272097 DOI: 10.3390/ijms12128645
    Newcastle disease virus (NDV) is used as an antineoplastic agent in clinical tumor therapy. It has prompted much interest as an anticancer agent because it can replicate up to 10,000 times better in human cancer cells than in most normal cells. This study was carried out to determine the oncolytic potential of NDV strain AF2240 and V4-UPM on WEHI-3B leukemia cell line. Results from MTT cytotoxicity assay showed that the CD(50) values for both strains were 2 and 8 HAU for AF2240 and V4-UPM, respectively. In addition, bromodeoxyuridine (BrdU) and trypan blue dye exclusion assays showed inhibition in cell proliferation after different periods. Increase in the cellular level of caspase-3 and detection of DNA laddering using agarose gel electrophoresis on treated cells with NDV confirmed that the mode of cell death was apoptosis. In addition, flow-cytometry analysis of cellular DNA content showed that the virus caused an increase in the sub-G1 region (apoptosis peaks). In conclusion, NDV strains AF2240 and V4-UPM caused cytolytic effects against WEHI-3B leukemic cell line.
    Matched MeSH terms: Blood Cells/pathology; Blood Cells/physiology; Blood Cells/virology*; 3T3 Cells
  10. Ibnubaidah MA, Chua KH, Mazita A, Azida ZN, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:115-6.
    PMID: 19025012
    A potential cure for hearing loss would be to regenerate hair cells by stimulating cells of the damaged inner ear sensory epithelia to proliferate and differentiate into hair cells. Here, we investigated the possibility to isolate, culture-expand and characterize the cells from the cochlea membrane of adult mice. Our results showed that the cultured cells isolated from mouse cochlea membrane were heterogenous in nature. Morphologically there were epithelial like cells, hair cell like, nerve cell like and fibroblastic cells observed in the culture. The cultured cells were immunopositive for specific hair cell markers including Myosin 7a, Calretinin and Espin.
    Matched MeSH terms: Cells, Cultured; Epithelial Cells/cytology*; Hair Cells, Auditory/cytology*
  11. Simat SF, Chua KH, Abdul Rahman H, Tan AE, Tan GC
    Med J Malaysia, 2008 Jul;63 Suppl A:53-4.
    PMID: 19024980
    The aim of the study is to evaluate the stemness gene expression of cultured human amniotic epithelial cells (HAECs) in serial passages. HAECs obtained from human term placentae were cultured in F12:DMEM(1:1) + 10% FBS +10ng/ml EGF in serial passages (P0, P1, P2 and P4). Quantitative RT-PCR was used to assess the gene expression analysis. The results showed that cultured HAECs expressed and downregulated the stemness genes expression for Oct-4, Sox-2, Nanog3, FGF4, Rex-1, FZD-9, BST-1 ABCG2. However, vimentin and nestin gene expression were upregulated. The results suggested that cultured HAECs may have pluripotent and multipotent properties.
    Matched MeSH terms: Cells, Cultured*; Pluripotent Stem Cells/cytology*; Pluripotent Stem Cells/transplantation
  12. Halim NS, Aizat WM, Yahaya BH
    Regen Med, 2019 01;14(1):15-31.
    PMID: 30566028 DOI: 10.2217/rme-2018-0020
    AIM: This study was aimed to investigate the effect of mesenchymal stem cell (MSC)-secreted factors on airway repair.

    MATERIALS & METHODS: An indirect in vitro coculture model of injured airway epithelium explant with MSCs was developed. LC-MS/MS analysis was performed to determine factors secreted by MSCs and their involvement in epithelium repair was evaluated by histopathological assessment.

    RESULTS: The identification of 54 of MSC proteins of which 44 of them were secretory/extracellular proteins. 43 of the secreted proteins were found to be involved in accelerating airway epithelium repair by stimulating the migratory, proliferative and differentiation abilities of the endogenous repair mechanisms. MSC-secreted proteins also initiated epithelial-mesenchymal transition process during early repair.

    CONCLUSION: MSC-secreted factors accelerated airway epithelial repair by stimulating the endogenous reparative and regenerative ability of lung cells.

    Matched MeSH terms: Epithelial Cells/cytology*; Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
  13. Mat Luwi NE, Kadir R, Mohamud R, A Garcia-Santana ML, Acevedo R, Sarmiento ME, et al.
    Int J Mycobacteriol, 2020 8 31;9(3):261-267.
    PMID: 32862158 DOI: 10.4103/ijmy.ijmy_82_20
    Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrated their immunogenicity and protective capacity against Mycobacterium tuberculosis in mice. To characterize the immunomodulatory capacity of this experimental vaccine candidate, in the current study, the stimulatory capacity of LMs was determined on bone marrow-derived dendritic cells (BMDCs) from mice.

    Methods: LMs were obtained and incubated with mature BMDCs. The internalization of LMs by BMDCs was studied by confocal microscopy, and the LMs immune-stimulatory capacity was determined by the expression of surface molecules (CD86 and MHCII) and the cytokine production (interleukin [IL]-12, interferon-Υ, tumor necrosis factor-α, and IL-10) 24 h after exposure to LMs.

    Results: The interaction of LMs with BMDCs and its internalization was demonstrated as well as the immune activation of BMDCs, characterized by the increased expression of CD86 and the production of IL-12. The LMs internalization and immune activation of BMDCs were blocked in the presence of cytochalasin, filipin III and chlorpromazine, which demonstrated that internalization of LMs by BMDCs is a key process for the LMs induced immune activation of BMDCs.

    Conclusions: The results obtained support the further evaluation of LMs as a mycobacterial vaccine, adjuvant, and in immunotherapy.

    Matched MeSH terms: Bone Marrow Cells/immunology; Dendritic Cells/drug effects*; Dendritic Cells/immunology*
  14. Kawai H, Tsujigiwa H, Siar CH, Nakano K, Takabatake K, Fujii M, et al.
    Int J Med Sci, 2018;15(12):1406-1414.
    PMID: 30275769 DOI: 10.7150/ijms.24370
    Background: The tumor microenvironment and its stromal cells play an important role in cancer development and metastasis. Bone marrow-derived cells (BMDCs), a rich source of hematopoietic and mesenchymal stem cells, putatively contribute to this tumoral stroma. However their characteristics and roles within the tumor microenvironment are unclear. In the present study, BMDCs in the tumor microenvironment were traced using the green fluorescent protein (GFP) bone marrow transplantation model. Methods: C57BL/6 mice were irradiated and rescued by bone marrow transplantation from GFP-transgenic mice. Lewis lung cancer cells were inoculated into the mice to generate subcutaneous allograft tumors or lung metastases. Confocal microscopy, immunohistochemistry for GFP, α-SMA, CD11b, CD31, CD34 and CD105, and double-fluorescent immunohistochemistry for GFP-CD11b, GFP-CD105 and GFP-CD31 were performed. Results: Round and dendritic-shaped GFP-positive mononuclear cells constituted a significant stromal subpopulation in primary tumor peripheral area (PA) and metastatic tumor area (MA) microenvironment, thus implicating an invasive and metastatic role for these cells. CD11b co-expression in GFP-positive cells suggests that round/dendritic cell subpopulations are possibly BM-derived macrophages. Identification of GFP-positive mononuclear infiltrates co-expressing CD31 suggests that these cells might be BM-derived angioblasts, whereas their non-reactivity for CD34, CD105 and α-SMA implies an altered vascular phenotype distinct from endothelial cells. Significant upregulation of GFP-positive, CD31-positive and GFP/CD31 double-positive cell densities positively correlated with PA and MA (P<0.05). Conclusion: Taken together, in vivo evidence of traceable GFP-positive BMDCs in primary and metastatic tumor microenvironment suggests that recruited BMDCs might partake in cancer invasion and metastasis, possess multilineage potency and promote angiogenesis.
    Matched MeSH terms: Bone Marrow Cells*; Stromal Cells; Mesenchymal Stromal Cells*
  15. Parate D, Franco-Obregón A, Fröhlich J, Beyer C, Abbas AA, Kamarul T, et al.
    Sci Rep, 2017 08 25;7(1):9421.
    PMID: 28842627 DOI: 10.1038/s41598-017-09892-w
    Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
    Matched MeSH terms: Cells, Cultured; Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*; Mesenchymal Stromal Cells/radiation effects*
  16. Kardia E, Mohamed R, Yahaya BH
    Sci Rep, 2017 09 15;7(1):11732.
    PMID: 28916766 DOI: 10.1038/s41598-017-11992-6
    Airway stem/progenitor epithelial cells (AECs) are notable for their differentiation capacities in response to lung injury. Our previous finding highlighted the regenerative capacity of AECs following transplantation in repairing tracheal injury and reducing the severity of alveolar damage associated acute lung injury in a rabbit model. The goal of this study is to further investigate the potential of AECs to re-populate the tracheal epithelium and to study their stimulatory effect on inhibiting pro-inflammatory cytokines, epithelial cell migration and proliferation, and epithelial-to-mesenchymal transition (EMT) process following tracheal injury. Two in vitro culture assays were applied in this study; the direct co-culture assay that involved a culture of decellularised tracheal epithelium explants and AECs in a rotating tube, and indirect co-culture assay that utilized microporous membrane-well chamber system to separate the partially decellularised tracheal epithelium explants and AEC culture. The co-culture assays provided evidence of the stimulatory behaviour of AECs to enhance tracheal epithelial cell proliferation and migration during early wound repair. Factors that were secreted by AECs also markedly suppressed the production of IL-1β and IL-6 and initiated the EMT process during tracheal remodelling.
    Matched MeSH terms: Cells, Cultured; Epithelial Cells/metabolism*; Stem Cells/metabolism
  17. Heng BC, Gong T, Wang S, Lim LW, Wu W, Zhang C
    J Endod, 2017 Mar;43(3):409-416.
    PMID: 28231979 DOI: 10.1016/j.joen.2016.10.033
    INTRODUCTION: Dental follicle stem cells (DFSCs) possess neurogenic potential because they originate from the embryonic neural crest. This study investigated whether neural differentiation of DFSCs can be enhanced by culture on decellularized matrix substrata (NSC-DECM) derived from neurogenesis of human embryonic stem cells (hESCs).

    METHODS: The hESCs were differentiated into neural stem cells (NSCs), and NSC-DECM was extracted from confluent monolayers of NSCs through treatment with deionized water. DFSCs seeded on NSC-DECM, Geltrex, and tissue culture polystyrene (TCPS) were subjected to neural induction during a period of 21 days. Expression of early/intermediate (Musashi1, PAX6, NSE, and βIII-tubulin) and mature/late (NGN2, NeuN, NFM, and MASH1) neural markers by DFSCs was analyzed at the 7-, 14-, and 21-day time points with quantitative real-time polymerase chain reaction. Immunocytochemistry for detection of βIII-tubulin, PAX6, and NGN2 expression by DFSCs on day 7 of neural induction was also carried out.

    RESULTS: Quantitative RT-PCR showed that expression of PAX6, Musashi1, βIII-tubulin, NSE, NGN2, and NFM by DFSCs was enhanced on NSC-DECM versus either the Geltrex or TCPS groups. Immunocytochemistry showed that DFSCs in the NSC-DECM group displayed more intense staining for βIII-tubulin, PAX6, and NGN2 expression, together with more neurite outgrowths and elongated morphology, as compared with either Geltrex or TCPS.

    CONCLUSIONS: DECM derived from neurogenesis of hESCs can enhance the neurogenic potential of DFSCs.

    Matched MeSH terms: Cells, Cultured; Embryonic Stem Cells/cytology*; Neural Stem Cells/physiology*
  18. Wan Safwani WKZ, Choi JR, Yong KW, Ting I, Mat Adenan NA, Pingguan-Murphy B
    Cryobiology, 2017 04;75:91-99.
    PMID: 28108309 DOI: 10.1016/j.cryobiol.2017.01.006
    Cryopreservation is the only existing method of storage of human adipose-derived stem cells (ASCs) for clinical use. However, cryopreservation has been shown to be detrimental to ASCs, particularly in term of cell viability. To restore the viability of cryopreserved ASCs, it is proposed to culture the cells in a hypoxic condition. To this end, we aim to investigate the effect of hypoxia on the cryopreserved human ASCs in terms of not only cell viability, but also their growth and stemness properties, which have not been explored yet. In this study, human ASCs were cultured under four different conditions: fresh (non-cryopreserved) cells cultured in 1) normoxia (21% O2) and 2) hypoxia (2% O2) and cryopreserved cells cultured in 3) normoxia and 4) hypoxia. ASCs at passage 3 were subjected to assessment of viability, proliferation, differentiation, and expression of stemness markers and hypoxia-inducible factor-1 alpha (HIF-1α). We found that hypoxia enhances the viability and the proliferation rate of cryopreserved ASCs. Further, hypoxia upregulates HIF-1α in cryopreserved ASCs, which in turn activates chondrogenic genes to promote chondrogenic differentiation. In conclusion, hypoxic-preconditioned cryopreserved ASCs could be an ideal cell source for cartilage repair and regeneration.
    Matched MeSH terms: Cells, Cultured; Stem Cells/cytology; Adult Stem Cells/cytology*
  19. Gilbert-Jaramillo J, Komarasamy TV, Balasubramaniam VR, Heather LC, James WS
    Antiviral Res, 2024 Aug;228:105933.
    PMID: 38851593 DOI: 10.1016/j.antiviral.2024.105933
    The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 μM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 μM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.
    Matched MeSH terms: Cells, Cultured; Neural Stem Cells/drug effects; Neural Stem Cells/metabolism; Neural Stem Cells/virology
  20. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R
    Cytotherapy, 2016 Jan;18(1):13-24.
    PMID: 26631828 DOI: 10.1016/j.jcyt.2015.10.008
    The unique properties of mesenchymal stromal/stem cells (MSCs) to self-renew and their multipotentiality have rendered them attractive to researchers and clinicians. In addition to the differentiation potential, the broad repertoire of secreted trophic factors (cytokines) exhibiting diverse functions such as immunomodulation, anti-inflammatory activity, angiogenesis and anti-apoptotic, commonly referred to as the MSC secretome, has gained immense attention in the past few years. There is enough evidence to show that the one important pathway by which MSCs participate in tissue repair and regeneration is through its secretome. Concurrently, a large body of MSC research has focused on characterization of the MSC secretome; this includes both soluble factors and factors released in extracellular vesicles, for example, exosomes and microvesicles. This review provides an overview of our current understanding of the MSC secretome with respect to their potential clinical applications.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/secretion*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links