Displaying publications 81 - 100 of 139 in total

Abstract:
Sort:
  1. Dorraj M, Zakaria A, Abdollahi Y, Hashim M, Moosavi S
    ScientificWorldJournal, 2014;2014:741034.
    PMID: 25243225 DOI: 10.1155/2014/741034
    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment.
    Matched MeSH terms: Ceramics/standards; Ceramics/chemistry*
  2. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
    Matched MeSH terms: Ceramics/pharmacology
  3. Ahsan MR, Islam MT, Habib Ullah M, Mahadi WN, Latef TA
    ScientificWorldJournal, 2014;2014:909854.
    PMID: 25165750 DOI: 10.1155/2014/909854
    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
    Matched MeSH terms: Ceramics/chemistry*
  4. Al-Maqtari AA, Razak AA, Hamdi M
    Dent Mater J, 2014;33(4):458-65.
    PMID: 25087658
    This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact maxillary premolar was digitized using CT scanning. An imaging software, Mimics, was used to reconstruct 3D models based on computed tomography (CT) data saved in DICOM format. Eight different 3D models were created for FEA, where each 3D model was meshed and its bottom boundaries constrained. A static load was applied in the oblique direction. The materials were assumed to be isotropic and homogeneous. Highest von Mises stress values were found in areas directly below the load application point, and stress gradually decreased in occlusal loading direction from the external surface toward the dentin. Stress levels occurring at veneer-ceramic core-cement-dentin interfaces were shown to be lower in multilayered ceramic cores than in single-layer models.
    Matched MeSH terms: Ceramics*
  5. Tan TJ, Wang D, Moraru CI
    J Dairy Sci, 2014;97(8):4759-71.
    PMID: 24881794 DOI: 10.3168/jds.2014-7957
    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF.
    Matched MeSH terms: Ceramics/chemistry
  6. Siti Hanna Elias, Maketab Mohamed, Aznah Nor-Anuar, Khalida Muda, Mohd Arif Hakimi Mat Hassan, Mohd. Nor Othman, et al.
    Sains Malaysiana, 2014;43:1397-1403.
    In the present study, capability of water hyacinth in removing heavy metals such as Cadmium (Cd), Chromium (Cr), Copper (Cu), Zinc (Zn), Iron (Fe), and Boron (B) in ceramic wastewater was investigated. The metal removal efficiency was identified by evaluating the translocation of metals in roots, leaves and shoot of water hyacinth. The heavy metal removal efficiency followed the order Fe>Zn>Cd>Cu>Cr>B during the treatment process. Water hyacinth had luxury consumption of those 6 elements. This study used the circulation system with 3 columns of plants which functioned as bioremediation of the sample. The concentration of metals in roots is much higher 10 times than leaves and stems. Roots give the result of metalR>metalL. The removal concentration from water hyacinth was estimated under pH of 8.21 to 8.49. This study proves water hyacinth to be a best plant for phytoremediation process
    Matched MeSH terms: Ceramics
  7. Siew PF, Wan Yusmawati Wan Yusoff, Azman Jalar
    Sains Malaysiana, 2014;43:827-832.
    The physical properties and structural stability of the Quad Flat No-Leads (QFN) package with different gamma radiation doses have been investigated. The packages were irradiated with Co-60 gamma radiation with varying doses of 5 Gy, 50 Gy, 500 Gy, 5 kGy and 50 kGy with operating dose of 2.54 kGylh at room temperature. The infinite focus microscope (IFM) was used to measure the dimensional change and slantinglwarpage behaviour, while the 3D CT Scan X-ray machine was used to determine the occurrence of deflection on a wire in package due to exposure. It is believed that radiation effect on ceramic filler in the epoxy mold compound (EMC) plays an important role to induce the defects and resulted in swelling of the package. The slantinglwarpage behaviour is believed to be caused by the swelling behaviour of ceramic filler and further induced structural stability. The induced stress on the EMC structural after the dimensional change and slantinglwarpage failure leads to the occurrence of wire sweep. The finding suggests that defect production in swelled ceramic filler leads to the occurrence of dimensional and structure instability.
    Matched MeSH terms: Ceramics
  8. Ullah MH, Islam MT, Faruque MRI
    Materials (Basel), 2013 Nov 06;6(11):5058-5068.
    PMID: 28788376 DOI: 10.3390/ma6115058
    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS), a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation) telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.
    Matched MeSH terms: Ceramics
  9. Islam MT, Ullah MH, Singh MJ, Faruque MRI
    Materials (Basel), 2013 Jul 31;6(8):3226-3240.
    PMID: 28811432 DOI: 10.3390/ma6083226
    A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.
    Matched MeSH terms: Ceramics
  10. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Ceramics/chemistry
  11. Gunarajah DR, Samman N
    J Oral Maxillofac Surg, 2013 Mar;71(3):550-70.
    PMID: 23422151 DOI: 10.1016/j.joms.2012.10.029
    To evaluate the reported use and outcomes of implant materials used for the restoration of post-traumatic orbital floor defects in adults.
    Matched MeSH terms: Ceramics
  12. Muhammad Azwadi Sulaiman, Hutagalung, Sabar D., Zainal A. Ahmad
    MyJurnal
    CaCu3Ti4O12 (CCTO) has attracted a great attention for electronic devices miniaturization due to its
    very high dielectric constant properties at a wide range of frequency and nearly constant over broad temperature range. The origins of the giant dielectric constant have been speculated from electrical heterogeneous of interior elements of the CCTO ceramics. Four origins were suggested contributed to the electrical heterogeneous. In this study heat treatment were done with the electrode contact in Argon gas environment and the electrical properties over very wide frequency of CCTO ceramics were investigated. Cylindrical CCTO pellets samples were prepared by solid state reaction method and single phase of XRD pattern was obtained after sintering processes. Electrical impedance responds were measured at frequency from 100 Hz to 1 GHz for the samples for untreated and heat treated at 200ºC, 250ºC, 300ºC, 350ºC and 400ºC of CCTO. Improvement to the dielectric constant can be seen for 350ºC and 400ºC samples and dielectric loss were improved for 200ºC and 300ºC samples for overall frequency. The variations were discussed based on oxygen deficiency content and resistivity of the elements inside of CCTO structure.
    Matched MeSH terms: Ceramics
  13. Ahmad Zahirani Ahmad Azhar, Hasmaliza Mohamed, Mani Maran Ratnam, Zainal Arifin Ahmad
    MyJurnal
    The microstructure and mechanical properties of ceramic composites produced from alumina, yttria stabilized zirconia and chromia oxide system was investigated. The Cr2O3 weight percent was varied from 0 wt% to 1.0 wt%. Each batch of composition was mixed, uniaxially pressed to 13mm diameter and sintered at 1600 ◦C for 4 h in pressureless conditions. Studies on the effects of the sample microstructures on their mechanical and physical properties such as fracture toughness and bulk density were carried out. Results show that an addition of 0.6 wt% of Cr2O3 produces the best mechanical properties. Furthermore, microstructural observations show that the Al2O3 grain size is significantly dependent on the amount of Cr2O3 additives used. Maximum value obtained with 0.6 wt % Cr2O3 for the fracture toughness is 5.36 MPa.m1/2.
    Matched MeSH terms: Ceramics
  14. Lew KS, Othman R, Ishikawa K, Yeoh FY
    J Biomater Appl, 2012 Sep;27(3):345-58.
    PMID: 21862511 DOI: 10.1177/0885328211406459
    This review summarises the major developments of macroporous bioceramics used mainly for repairing bone defects. Porous bioceramics have been receiving attention ever since their larger surface area was reported to be beneficial for the formation of more rigid bonds with host tissues. The study of porous bioceramics is important to overcome the less favourable bonds formed between dense bioceramics and host tissues, especially in healing bone defects. Macroporous bioceramics, which have been studied extensively, include hydroxyapatite, tricalcium phosphate, alumina, and zirconia. The pore size and interconnections both have significant effects on the growth rate of bone tissues. The optimum pore size of hydroxyapatite scaffolds for bone growth was found to be 300 µm. The existence of interconnections between pores is critical during the initial stage of tissue ingrowth on porous hydroxyapatite scaffolds. Furthermore, pore formation on β-tricalcium phosphate scaffolds also allowed the impregnation of growth factors and cells to improve bone tissues growth significantly. The formation of vascularised tissues was observed on macroporous alumina but did not take place in the case of dense alumina due to its bioinert nature. A macroporous alumina coating on scaffolds was able to improve the overall mechanical properties, and it enabled the impregnation of bioactive materials that could increase the bone growth rate. Despite the bioinertness of zirconia, porous zirconia was useful in designing scaffolds with superior mechanical properties after being coated with bioactive materials. The pores in zirconia were believed to improve the bone growth on the coated system. In summary, although the formation of pores in bioceramics may adversely affect mechanical properties, the advantages provided by the pores are crucial in repairing bone defects.
    Matched MeSH terms: Ceramics*
  15. Sopyan I, Fadli A, Mel M
    J Mech Behav Biomed Mater, 2012 Apr;8:86-98.
    PMID: 22402156 DOI: 10.1016/j.jmbbm.2011.10.012
    This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio.
    Matched MeSH terms: Ceramics/chemistry
  16. Abdullah WR, Zakaria A, Ghazali MS
    Int J Mol Sci, 2012;13(4):5278-89.
    PMID: 22606043 DOI: 10.3390/ijms13045278
    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.
    Matched MeSH terms: Ceramics/chemical synthesis*; Ceramics/chemistry*
  17. Golkar E, Prabuwono AS, Patel A
    Sensors (Basel), 2012;12(11):14774-91.
    PMID: 23202186 DOI: 10.3390/s121114774
    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously.
    Matched MeSH terms: Ceramics
  18. Abd Samad H, Jaafar M, Othman R, Kawashita M, Abdul Razak NH
    Biomed Mater Eng, 2011;21(4):247-58.
    PMID: 22182792 DOI: 10.3233/BME-2011-0673
    In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.
    Matched MeSH terms: Ceramics/chemical synthesis*; Ceramics/chemistry*
  19. Rizwan Z, Zakaria A, Ghazali MS
    Int J Mol Sci, 2011;12(3):1625-32.
    PMID: 21673911 DOI: 10.3390/ijms12031625
    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.
    Matched MeSH terms: Ceramics/chemistry*
  20. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Ceramics/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links