Geraniin (GE), an ellagitannin (ET) renowned for its promising health advantages, faces challenges in its practical applications due to its limited bioavailability. This innovative and novel formulation of GE and soy-phosphatidylcholine (GE-PL) complex has the potential to increase oral bioavailability, exhibiting high entrapment efficiency of 100.2 ± 0.8 %, and complexation efficiency of 94.6 ± 1.1 %. The small particle size (1.04 ± 0.11 μm), low polydispersity index (0.26 ± 0.02), and adequate zeta potential (-26.1 ± 0.12 mV), indicate its uniformity and stability. Moreover, the formulation also demonstrates improved lipophilicity, reduced aqueous and buffer solubilities, and better partition coefficient. It has been validated by various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies. Oral bioavailability and pharmacokinetics of free GE and GE-PL complex investigated in rabbits demonstrated enhanced plasma concentration of ellagic acid (EA) compared to free GE. Significantly, GE, whether in its free form or as part of the GE-PL complex, was not found in the circulatory system. However, EA levels were observed at 0.5 h after administration, displaying two distinct peaks at 2 ± 0.03 h (T1max) and 24 ± 0.06 h (T2max). These peaks corresponded to peak plasma concentrations (C1max and C2max) of 588.82 ng/mL and 711.13 ng/mL respectively, signifying substantial 11-fold and 5-fold enhancements when compared to free GE. Additionally, it showed an increased area under the curve (AUC), the elimination half-life (t1/2, el) and the elimination rate constant (Kel). The formulation of the GE-PL complex prolonged the presence of EA in the bloodstream and improved its absorption, ultimately leading to a higher oral bioavailability. In summary, the study highlights the significance of the GE-PL complex in overcoming the bioavailability limitations of GE, paving the way for enhanced therapeutic outcomes and potential applications in drug delivery and healthcare.
There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug delivery carriers.
The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
Hydrocortisone cream intended for atopic eczema often produces unwanted side effects after long-term use. These side effects are essentially due to repeated percutaneous administration of the medication for skin dermatitis, as atopic eczema is a relapsing disorder. Hence, there is a need to develop a new hydrocortisone formulation that will deliver the drug more effectively and require a reduced dosing frequency; therefore, the side effects could be minimized. In this study, a hydroxypropyl methylcellulose (HPMC) lyogel system based on 80% organic and 20% aqueous solvents containing 1% hydrocortisone was formulated. The hydrocortisone lyogel physicochemical characteristics, rheological properties, stability profile, and in vitro Franz cell drug release properties, as well as the in vivo therapeutic efficacies and dermal irritancy in Balb/c mice were investigated. The HPMC lyogel appeared clear and soft and was easy to rub on the skin. The lyogel also showed a higher drug release profile compared with commercial hydrocortisone cream. Similar to the cream, HPMC lyogels exhibited pseudoplastic behavior. From the mouse model, the hydrocortisone lyogel showed higher inflammatory suppressive effects than the cream. However, it did not reduce the transepidermal water loss as effectively as the control did. The dermal irritancy testing revealed that the hydrocortisone lyogel caused minimal irritation. In conclusion, HPMC lyogel is a promising vehicle to deliver hydrocortisone topically, as it showed a higher drug release in vitro as well as enhanced therapeutic efficacy in resolving eczematous inflammatory reaction compared with commercial cream.
Lyophilised wafers have been shown to have potential as a modern dressing for mucosal wound healing. The wafer absorbs wound exudates and transforms into a gel, thus providing a moist environment which is essential for wound healing. The objective of this study was to develop a carboxymethyl cellulose wafer containing antimicrobials to promote wound healing and treat wound infection. The pre-formulation studies began with four polymers, sodium carboxymethyl cellulose (NaCMC), methylcellulose (MC), sodium alginate and xanthan gum, but only NaCMC and MC were chosen for further investigation. The wafers were characterised by physical assessments, solvent loss, microscopic examination, swelling and hydration properties, drug content uniformity, drug release and efficacy of antimicrobials. Three of the antimicrobials, neomycin trisulphate salt hydrate, sulphacetamide sodium and silver nitrate, were selected as model drugs. Among the formulations, NaCMC wafer containing neomycin trisulphate exhibited the most desirable wound dressing characteristics (i.e., flexibility, sponginess, uniform wafer texture, high content drug uniformity) with the highest in vitro drug release and the greatest inhibition against both Gram positive and Gram negative bacteria. In conclusion, we successfully developed a NaCMC lyophilised wafer containing antimicrobials, and this formulation has potential for use in mucosal wounds infected with bacteria.
Hydrocortisone (HC) is a topical glucocorticoid for the treatment of atopic dermatitis (AD); the local as well as systemic side effects limit its use. Hydroxytyrosol (HT) is a polyphenol present in olive oil that has strong antimicrobial and antioxidant activities. HC-HT coloaded chitosan nanoparticles (HC-HT CSNPs) were therefore developed to improve the efficacy against AD. In this study, HC-HT CSNPs of 235 ± 9 nm in size and with zeta potential +39.2 ± 1.6 mV were incorporated into aqueous cream (vehicle) and investigated for acute dermal toxicity, dermal irritation, and repeated dose toxicity using albino Wistar rats. HC-HT CSNPs exhibited LD50 > 125 mg/body surface area of active, which is 100-fold higher than the normal human dose of HC. Compared with the commercial formulation, 0.5 g of HC-HT CSNPs did not cause skin irritation, as measured by Tewameter®, Mexameter®, and as observed visually. Moreover, no-observed-adverse-effect level was observed with respect to body weight, organ weight, feed consumption, blood hematological and biochemical, urinalysis, and histopathological parameters at a dose of 1000 mg/body surface area per day of HC-HT CSNPs for 28 days. This in vivo study demonstrated that nanoencapsulation significantly reduced the toxic effects of HC and this should allow further clinical investigations.
Once-daily deferasirox dispersible tablets (DT) have a well-defined safety and efficacy profile and, compared with parenteral deferoxamine, provide greater patient adherence, satisfaction, and quality of life. However, barriers still exist to optimal adherence, including gastrointestinal tolerability and palatability, leading to development of a new film-coated tablet (FCT) formulation that can be swallowed with a light meal, without the need to disperse into a suspension prior to consumption. The randomized, open-label, phase II ECLIPSE study evaluated the safety of deferasirox DT and FCT formulations over 24 weeks in chelation-naïve or pre-treated patients aged ≥10 years, with transfusion-dependent thalassemia or IPSS-R very-low-, low-, or intermediate-risk myelodysplastic syndromes. One hundred seventy-three patients were randomized 1:1 to DT (n = 86) or FCT (n = 87). Adverse events (overall), consistent with the known deferasirox safety profile, were reported in similar proportions of patients for each formulation (DT 89.5%; FCT 89.7%), with a lower frequency of severe events observed in patients receiving FCT (19.5% vs. 25.6% DT). Laboratory parameters (serum creatinine, creatinine clearance, alanine aminotransferase, aspartate aminotransferase and urine protein/creatinine ratio) generally remained stable throughout the study. Patient-reported outcomes showed greater adherence and satisfaction, better palatability and fewer concerns with FCT than DT. Treatment compliance by pill count was higher with FCT (92.9%) than with DT (85.3%). This analysis suggests deferasirox FCT offers an improved formulation with enhanced patient satisfaction, which may improve adherence, thereby reducing frequency and severity of iron overload-related complications.
Curcumin (CUR) has been formulated into a host of nano-sized formulations in a bid to improve its in vivo solubility, stability and bioavailability. The aim of this study was to investigate whether the encapsulation of CUR in nanocarriers would impede its biological interactivity, specifically its potential anti-cancer adjuvant activity via the modulation of CYP enzymes in vitro. NanoCUR, a micellar dispersion prepared via a thin film method using only Pluronic F127 as excipient, was amenable to lyophilization, and retained its nano-sized spherical dimensions (17-33 nm) upon reconstitution with water followed by dilution to 5 μM with HBSS or EMEM. NanoCUR was a weaker cytotoxic agent compared to CUR in solution (sCUR), affecting HepG2 cell viability only when the incubation time was prolonged from 4h to 48 h. Correlation with 2h uptake data suggests this was due to a lower cellular uptake rate of CUR from NanoCUR than from sCUR. The poorer CUR accessibility might also account for NanoCUR being a weaker inhibitor of CYP2C9 and CYP2D6 than sCUR. NanoCUR was, however, 1.76-fold more potent against the CYP3A4 (IC50 5.13 ± 0.91 μM) metabolic function. The higher activity against CYP3A4 might be attributed to the synergistic action of Pluronic F127, since the blank micellar dispersion also inhibited CYP3A4 activity. Both sCUR and NanoCUR had no effect on the CYP3A4 mRNA levels in the HepG2 cells. NanoCUR therefore, maintained most of the biological activities of CUR in vitro, albeit at a lower potency and response rate.
Microporous polymeric matrices prepared from poly(ɛ-caprolactone) [PCL] were evaluated for controlled vaginal delivery of the antiprotozoal agent (tinidazole) in the treatment of the sexually transmitted infection, trichomoniasis. The matrices were produced by rapidly cooling co-solutions of PCL and tinidazole in acetone to -80 °C to induce crystallisation and hardening of the polymer. Tinidazole incorporation in the matrices increased from 1.4 to 3.9% (w/w), when the drug concentration in the starting PCL solution was raised from 10 to 20% (w/w), giving rise to drug loading efficiencies up to 20%. Rapid 'burst release' of 30% of the tinidazole content was recorded over 24 h when the PCL matrices were immersed in simulated vaginal fluid. Gradual drug release occurred over the next 6 days resulting in delivery of around 50% of the tinidazole load by day 7 with the released drug retaining antiprotozoal activity at levels almost 50% that of the 'non-formulated' drug in solution form. Basic modelling predicted that the concentration of tinidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration against Trichomonas vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of antiprotozoal agents in the treatment and prevention of sexually transmitted infections.
Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
The aim of this study was to develop polyunsaturated fatty acid (PUFA) long chain glyceride (LCG) enriched self-nanoemulsifying lipidic nanomicelles systems (SNELS) for augmenting lymphatic uptake and enhancing oral bioavailability of docetaxel and compare its biopharmaceutical performance with a medium-chain fatty acid glyceride (MCG) SNELS. Equilibrium solubility and pseudo ternary phase studies facilitated the selection of suitable LCG and MCG. The critical material attributes (CMAs) and critical process parameters (CPPs) were earmarked using Placket-Burman Design (PBD) and Fractional Factorial Design (FFD) for LCG- and MCG-SNELS respectively, and nano micelles were subsequently optimized using I- and D-optimal designs. Desirability function unearthed the optimized SNELS with Temul <5min, Dnm <100nm, Rel15min >85% and Perm45min >75%. The SNELS demonstrated efficient biocompatibility and energy dependent cellular uptake, reduced P-gp efflux and increased permeability using bi-directional Caco-2 model. Optimal PUFA enriched LCG-SNELS exhibited distinctly superior permeability and absorption parameters during ex vivo permeation, in situ single pass intestinal perfusion, lymphatic uptake and in vivo pharmacokinetic studies over MCG-SNELS.
This study was aimed to enhance the dissolution rate, oral bioavailability and analgesic potential of the aceclofenac (AC) in the form of nanosuspension using cost-effective simple precipitation-ultrasonication approach. The nanocrystals were produced using the optimum conditions investigated for AC. The minimum particle size (PS) and polydispersity index was found to be 112±2.01 nm and 0.165, respectively, using hydroxypropyl methylcellulose (1%, w/w), polyvinylpyrrolidone K30 (1%, w/w) and sodium lauryl sulfate (0.12%, w/w). The characterization of AC was performed using zeta sizer, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The saturation solubility of the AC nanocrystals was substantially increased 2.6- and 4.5-fold compared to its unprocessed active pharmaceutical ingredient in stabilizer solution and unprocessed drug. Similarly, the dissolution rate of the AC nanocrystals was substantially enhanced compared to its other counterpart. The results showed that >88% of AC nanocrystals were dissolved in first 10 min compared to unprocessed AC (8.38%), microsuspension (66.65%) and its marketed tablets (17.65%). The in vivo studies of the produced stabilized nanosuspension demonstrated that the Cmax were 4.98- and 2.80-fold while area under curve from time of administration to 24 h (AUC0→24 h) were found 3.88- and 2.10-fold greater when compared with unprocessed drug and its marketed formulation, respectively. The improved antinociceptive activity of AC nanocrystals was shown at much lower doses as compared to unprocessed drug, which is purely because of nanonization which may be attributed to improved solubility and dissolution rate of AC, ultimately resulting in its faster rate of absorption.
A new neolignan, 3,4-dimethoxy-3',4'-methylenedioxy-2,9-epoxy-6,7-cyclo-1,8-neolign-11-en-5(5H)-one, which has been named (+)-kunstlerone (1), together with six known alkaloids: (+)-norboldine (2), (+)-N-methylisococlaurine (3), (+)-cassythicine (4), (+)-laurotetanine (5), (+)-boldine (6) and (-)-pallidine (7), were isolated from the leaves of Beilschmiedia kunstleri. The structures were established through various spectroscopic methods notably 1D- and 2D-NMR, UV, IR and LCMS-IT-TOF. (+)- Kunstlerone (1) showed a strong antioxidant activity, with an SC(50) of 20.0 µg/mL.
Microwave extraction of phytochemicals from medicinal plant materials has generated tremendous research interest and shown great potential. This research highlights the importance of microwave extraction in the analysis of flavonoids, isoflavonoid and phenolics and the antioxidant properties of extracts from three varieties of the Malaysian medicinal herb, Labisia pumila Benth. High and fast extraction performance ability, equal or higher extraction efficiencies than other methods, and the need for small samples and reagent volumes are some of the attractive features of this new promising microwave assisted extraction (MAE) technique. The aims of the present research were to determine the foliar phenolics and flavonoids contents of extracts of three varieties of L. pumila obtained by a microwave extraction method while flavonoid, isoflavonoid and phenolic compounds were analyzed using RP-HPLC. Furthermore, the antioxidant activities were measured by the DPPH and FRAP methods and finally, the chemical composition of the crude methanolic extracts of the leaves of all three varieties were analyzed by GS-MS.
This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
Fungi are a rich source of secondary metabolites with several pharmacological activities such as antifungal, antioxidant, antibacterial and anticancer to name a few. Due to the large number of diverse structured chemical compounds they produce, fungi from the phyla Ascomycota, Basidiomycota and Muccoromycota have been intensively studied for isolation of bioactive compounds. Basidiomycetes-derived secondary metabolites are known as a promising source of antibacterial compounds with activity against Gram-positive bacteria. The continued emergence of antimicrobial resistance (AMR) poses a major challenge to patient health as it leads to higher morbidity and mortality, higher hospital-stay duration and substantial economic burden in global healthcare sector. One of the key culprits for AMR crisis is Staphylococcus aureus causing community-acquired infections as the pathogen develops resistance towards multiple antibiotics. The recent emergence of community strains of S. aureus harbouring methicillin-resistant (MRSA), vancomycin-intermediate (VISA) and vancomycin-resistant (VRSA) genes associated with increased virulence is challenging. Despite the few significant developments in antibiotic research, successful MRSA therapeutic options are still needed to reduce the use of scanty and expensive second-line treatments. This paper provides an overview of findings from various studies on antibacterial secondary metabolites from basidiomycetes, with a special focus on antistaphylococcal activity.
This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box-Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000-5,000 rpm), sonication amplitude (20%-60%), and sonication time (30-150 seconds) on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, -52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box-Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, -55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard error of <2%. The optimum formulation showed more elastic and solid-like characteristics due to the existence of a large linear viscoelastic region.
Phosphate-free spray dried detergent powders (SDDP) comprising binary anionic surfactants of palm C16 methyl ester sulfonate (C16MES) and linear alkyl benzene sulfonic acid (LABSA) were produced using a 5 kg/h-capacity co-current pilot spray dryer (CSD). Six phosphate-free detergent (PFD) formulations comprising C16MES/LABSA in various ratios under pH 7-8 were studied. Three PFD formulations having C16MES/LABSA in respective ratios of 0:100 (control), 20:80 and 40:60 ratios were selected for further evaluation based on their optimum detergent slurry concentrations. The resulting SDDP from these formulations were analysed for its detergency stability (over nine months of storage period) and particle characteristics. C16MES/LABSA of 40:60 ratio was selected as the ideal PFD formulation since its resulting SDDP has consistent detergency stability (variation of 2.3% in detergency/active over nine months storage period), excellent bulk density (0.37 kg/L), fine particle size at 50% cumulative volume percentage (D50 of 60.48 μm), high coefficient of particle size uniformity (D60/D10 of 3.86) and large spread of equivalent particle diameters. In terms of surface morphology, the SDDP of the ideal formulation were found to have regular hollow particles with smooth spherical surfaces. Although SDDP of the ideal formulation have excellent characteristics, but in terms of flowability, these powders were classified as slightly less free flowing (Hausner ratio of 1.27 and Carr's index of 21.3).
We aimed to investigate the effects that natural lipids, theobroma oil (TO) and beeswax (BW), might have on the physical properties of formulated nanoparticles and also the degree of expulsion of encapsulated amphotericin B (AmB) from the nanoparticles during storage. Lecithin and sodium cholate were used as emulsifiers whilst oleic acid (OA) was used to study the influence of the state of orderliness/disorderliness within the matrices of the nanoparticles on the degree of AmB expulsion during storage. BW was found to effect larger z-average diameter compared with TO. Lecithin was found to augment the stability of the nanoparticles imparted by BW and TO during storage. An encapsulation efficiency (%EE) of 59% was recorded when TO was the sole lipid as against 42% from BW. In combination however, the %EE dropped to 39%. When used as sole lipid, TO or BW formed nanoparticles with comparatively higher enthalpies, 21.1 and 23.3 J/g respectively, which subsequently caused significantly higher degree of AmB expulsion, 81 and 83% respectively, whilst only 11.8% was expelled from a binary TO/BW mixture. A tertiary TO/BW/OA mixture registered the lowest enthalpy at 8.07 J/g and expelled 12.6% of AmB but encapsulated only 22% of AmB. In conclusion, nanoparticles made from equal concentrations of TO and BW produced the most desirable properties and worthy of further investigations.