Displaying publications 81 - 100 of 136 in total

Abstract:
Sort:
  1. Ullah F, Othman MB, Javed F, Ahmad Z, Md Akil H
    Mater Sci Eng C Mater Biol Appl, 2015 Dec 1;57:414-33.
    PMID: 26354282 DOI: 10.1016/j.msec.2015.07.053
    This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.
    Matched MeSH terms: Compressive Strength
  2. Amran M, Fediuk R, Vatin N, Lee YH, Murali G, Ozbakkaloglu T, et al.
    Materials (Basel), 2020 Sep 28;13(19).
    PMID: 32998362 DOI: 10.3390/ma13194323
    Foamed concrete (FC) is a high-quality building material with densities from 300 to 1850 kg/m3, which can have potential use in civil engineering, both as insulation from heat and sound, and for load-bearing structures. However, due to the nature of the cement material and its high porosity, FC is very weak in withstanding tensile loads; therefore, it often cracks in a plastic state, during shrinkage while drying, and also in a solid state. This paper is the first comprehensive review of the use of man-made and natural fibres to produce fibre-reinforced foamed concrete (FRFC). For this purpose, various foaming agents, fibres and other components that can serve as a basis for FRFC are reviewed and discussed in detail. Several factors have been found to affect the mechanical properties of FRFC, namely: fresh and hardened densities, particle size distribution, percentage of pozzolanic material used and volume of chemical foam agent. It was found that the rheological properties of the FRFC mix are influenced by the properties of both fibres and foam; therefore, it is necessary to apply an additional dosage of a foam agent to enhance the adhesion and cohesion between the foam agent and the cementitious filler in comparison with materials without fibres. Various types of fibres allow the reduction of by autogenous shrinkage a factor of 1.2-1.8 and drying shrinkage by a factor of 1.3-1.8. Incorporation of fibres leads to only a slight increase in the compressive strength of foamed concrete; however, it can significantly improve the flexural strength (up to 4 times), tensile strength (up to 3 times) and impact strength (up to 6 times). At the same time, the addition of fibres leads to practically no change in the heat and sound insulation characteristics of foamed concrete and this is basically depended on the type of fibres used such as Nylon and aramid fibres. Thus, FRFC having the presented set of properties has applications in various areas of construction, both in the construction of load-bearing and enclosing structures.
    Matched MeSH terms: Compressive Strength
  3. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Compressive Strength
  4. Komang-Agung IS, Hydravianto L, Sindrawati O, William PS
    Malays Orthop J, 2018 Nov;12(3):6-13.
    PMID: 30555640 DOI: 10.5704/MOJ.1811.002
    Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals' vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body's compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material's compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
    Matched MeSH terms: Compressive Strength
  5. Karunarathne VK, Paul SC, Šavija B
    Materials (Basel), 2019 Aug 17;12(16).
    PMID: 31426501 DOI: 10.3390/ma12162622
    In this study, the use of nano-silica (nano-SiO2) and bentonite as mortar additives for combating reinforcement corrosion is reported. More specifically, these materials were used as additives in ordinary Portland cement (OPC)/fly ash blended mortars in different amounts. The effects of nano-silica and bentonite addition on compressive strength of mortars at different ages was tested. Accelerated corrosion testing was used to assess the corrosion resistance of reinforced mortar specimens containing different amounts of nano-silica and bentonite. It was found that the specimens containing nano-SiO2 not only had higher compressive strength, but also showed lower steel mass loss due to corrosion compared to reference specimens. However, this was accompanied by a small reduction in workability (for a constant water to binder ratio). Mortar mixtures with 4% of nano-silica were found to have optimal performance in terms of compressive strength and corrosion resistance. Control specimens (OPC/fly ash mortars without any additives) showed low early age strength and low corrosion resistance compared to specimens containing nano-SiO2 and bentonite. In addition, samples from selected mixtures were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Finally, the influence of Ca/Si ratio of the calcium silicate hydrate (C-S-H) in different specimens on the compressive strength is discussed. In general, the study showed that the addition of nano-silica (and to a lesser extent bentonite) can result in higher strength and corrosion resistance compared to control specimens. Furthermore, the addition of nano-SiO2 can be used to offset the negative effect of fly ash on early age strength development.
    Matched MeSH terms: Compressive Strength
  6. Thiagamani SMK, Krishnasamy S, Muthukumar C, Tengsuthiwat J, Nagarajan R, Siengchin S, et al.
    Int J Biol Macromol, 2019 Nov 01;140:637-646.
    PMID: 31437507 DOI: 10.1016/j.ijbiomac.2019.08.166
    This work focuses on the fabrication of hybrid bio-composites using green epoxy as the matrix material, hemp (H) and sisal (S) fibre mats as the reinforcements. The hybrid composite with sisal/hemp fibres were fabricated by cost effective hand lay-up technique, followed by hot press with different stacking sequences. Static properties of the composites such as tensile, compressive, inter-laminar shear strengths (ILSS) and hardness were examined. The physical properties such as density, void content, water absorption and thickness swelling were also analyzed. The experimental results indicate that hybrid composites exhibited minor variation in tensile strength when the stacking sequence was altered. The hybrid composite with the intercalated arrangement (HSHS) exhibited the highest tensile modulus when compared with the other hybrid counterparts. Hybrid composites (SHHS and HSSH) offered 40% higher values of compressive strength than the other layering arrangements. HHHH sample exhibited the highest ILSS value of 4.08 MPa. Typical failure characteristics of the short beam test such as inter-laminar shear cracks in the transverse direction, micro-buckling and fibre rupture were also observed.
    Matched MeSH terms: Compressive Strength
  7. Shahedan NF, Abdullah MMAB, Mahmed N, Kusbiantoro A, Tammas-Williams S, Li LY, et al.
    Materials (Basel), 2021 Feb 08;14(4).
    PMID: 33567696 DOI: 10.3390/ma14040809
    This paper details analytical research results into a novel geopolymer concrete embedded with glass bubble as its thermal insulating material, fly ash as its precursor material, and a combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as its alkaline activator to form a geopolymer system. The workability, density, compressive strength (per curing days), and water absorption of the sample loaded at 10% glass bubble (loading level determined to satisfy the minimum strength requirement of a load-bearing structure) were 70 mm, 2165 kg/m3, 52.58 MPa (28 days), 54.92 MPa (60 days), and 65.25 MPa (90 days), and 3.73 %, respectively. The thermal conductivity for geopolymer concrete decreased from 1.47 to 1.19 W/mK, while the thermal diffusivity decreased from 1.88 to 1.02 mm2/s due to increased specific heat from 0.96 to 1.73 MJ/m3K. The improved physicomechanical and thermal (insulating) properties resulting from embedding a glass bubble as an insulating material into geopolymer concrete resulted in a viable composite for use in the construction industry.
    Matched MeSH terms: Compressive Strength
  8. Alabduljabbar H, Huseien GF, Sam ARM, Alyouef R, Algaifi HA, Alaskar A
    Materials (Basel), 2020 Dec 02;13(23).
    PMID: 33276508 DOI: 10.3390/ma13235490
    Alkali activated concretes have emerged as a prospective alternative to conventional concrete wherein diverse waste materials have been converted as valuable spin-offs. This paper presents a wide experimental study on the sustainability of employing waste sawdust as a fine/coarse aggregate replacement incorporating fly ash (FA) and granulated blast furnace slag (GBFS) to make high-performance cement-free lightweight concretes. Waste sawdust was replaced with aggregate at 0, 25, 50, 75, and 100 vol% incorporating alkali binder, including 70% FA and 30% GBFS. The blend was activated using a low sodium hydroxide concentration (2 M). The acoustic, thermal, and predicted engineering properties of concretes were evaluated, and the life cycle of various mixtures were calculated to investigate the sustainability of concrete. Besides this, by using the available experimental test database, an optimized Artificial Neural Network (ANN) was developed to estimate the mechanical properties of the designed alkali-activated mortar mixes depending on each sawdust volume percentage. Based on the findings, it was found that the sound absorption and reduction in thermal conductivity were enhanced with increasing sawdust contents. The compressive strengths of the specimens were found to be influenced by the sawdust content and the strength dropped from 65 to 48 MPa with the corresponding increase in the sawdust levels from 0% up to 100%. The results also showed that the emissions of carbon dioxide, energy utilization, and outlay tended to drop with an increase in the amount of sawdust and show more the lightweight concrete to be more sustainable for construction applications.
    Matched MeSH terms: Compressive Strength
  9. Bakhori SKM, Mahmud S, Mohamad D, Masudi SM, Seeni A
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:645-654.
    PMID: 30948101 DOI: 10.1016/j.msec.2019.03.034
    Zinc oxide eugenol (ZOE) cements are generally made up of 80%-90% ZnO powder while the remaining content consists of eugenol bonding resin. ZnO structure plays a major role in the morphology and mechanical properties of ZOE. In this study, we investigated the effects of different particle sizes/shapes of ZnO particles on the surface and mechanical properties of ZOE. Three samples were prepared namely ZnO-Ax, ZnO-B and ZnO-K. The crystallite sizes calculated from XRD were 37.76 nm (ZnO-Ax), 39.46 nm (ZnO-B) and 42.20 nm (ZnO-K) while the average particle sizes obtained by DLS were 21.11nm (ZnO-Ax), 56.73 nm (ZnO-B) and 2012 nm (ZnO-K). Results revealed that the compressive strengths of ZOE-Ax and ZOE-B were improved by 87.92% and 57.16%, respectively, relative to that of commercial ZOE-K. Vickers hardness test demonstrated that the hardness of ZOE-Ax and ZOE-B also increased by 74.9% and 31.1%, respectively. The ZnO-Ax nanostructure possessed a small average particle size (21.11 nm), a homogeneous size distribution (DLS) and an oxygen-rich surface (from EDS and elemental mapping). Meanwhile, ZnO-B exhibited a slightly larger average particle size of 56.73 nm compared with that of other samples. Sample ZnO-Ax demonstrated the highest compressive strength which was attributed to its large particle surface area (21.11 nm particle size) that provided a large contact area and greater interfacial (or interlock) bonding capability if compared to that of ZnO-K sample (2012 nm particle size).
    Matched MeSH terms: Compressive Strength
  10. Arumugam S, Kandasamy J, Md Shah AU, Hameed Sultan MT, Safri SNA, Abdul Majid MS, et al.
    Polymers (Basel), 2020 Jul 06;12(7).
    PMID: 32640502 DOI: 10.3390/polym12071501
    This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young's modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.
    Matched MeSH terms: Compressive Strength
  11. Dahlia Lema, A.M., Kartini, K., Dyg. Siti Quraisyah, A.A., Anthony, A.D., Nuraini, T., Siti Rahimah, R.
    MyJurnal
    Sludge is an unavoidable product of wastewater treatment that creates problems of disposal. Increasingly, strict environmental control regulations have resulted in limitations on sludge disposal options.Disposal by incineration has been found to be a good option. In this research, application of domestic waste sludge powder (DWSP) was used as cement replacement in concrete mix. This study utilised replacement of 3 %, 5 %, 7 %, 10 % and 15 % by weight of OPC with water binder (w/b) ratio of 0.60, 0.55 and 0.40 for Grade 30, Grade 40 and Grade 50 respectively. The performance of DWSP concrete in terms of its compressive strength, water absorption, water permeability and Rapid Chloride Ion penetration were investigated. All values of compressive strength for DWSP concrete were lower compared to the OPC control, and the strength decreased as the percentage of replacement with DWSP increased for Grade 30 and Grade 50, except for Grade 40 at replacement of 7 %. Meanwhile, water absorption and water permeability for the DWSP concrete increased as the replacement increased. Overall, with further research in producing quality DWSP, the potential of using this waste as a cement replacement material is very promising.
    Matched MeSH terms: Compressive Strength
  12. Umar Kassim, Omar Mohd Rohim
    MyJurnal
    In accordance upon conservation efforts, this research emphasizes on prevention of
    environmental pollution and considers the elements of sustainable of infrastructure
    construction materials, which is interlocking pavement block. The development of this
    innovative product apply the concept of 3Rs and waste to wealth by using the
    agricultural waste product, coconut shell, where widely available with very minimum
    cost worldwide especially in tropical country such as India, Indonesia, Philippines,
    Thailand and Malaysia. The main objective of this research is to produce an
    environmental friendly product with a good quality, low cost and lightweight known as
    Green Interlocking Pavement (GIP Block). The chemical composition of coconut shell
    ash and ordinary Portland cement being identified and compared to know whether it
    is able to react as a good binder in the mixture or not. The quality of GIP Block
    considered is compressive strength, water absorption and bulk density. All the blocks
    were curing in seven and 28 days before implementing the entire test. The existing
    interlocking pavement used as bench mark and GIP Block 0% of proportion of coconut
    shell ash used as control variables. The specimen of the interlocking pavement
    prepared in this research is 10%, 20% and 30% proportion of coconut shell ash to
    partially replace the quantity of cement. The ratio of the interlocking pavement apply
    in this research is 1:2 which stand for one part cement and two part of sand. The
    findings withdrawn from this research are: first, the chemical characteristic of the
    coconut shell ash and cement. Second, the value of bulk density slightly reduces as the
    percentage of coconut shell ash increases. Third, the additional of coconut shell ash to
    partially replace the quantity of cement in the product reduce the compressive
    strength and increase the percentage of water absorption.
    Matched MeSH terms: Compressive Strength
  13. Revati R, Majid MSA, Ridzuan MJM, Basaruddin KS, Rahman Y MN, Cheng EM, et al.
    J Mech Behav Biomed Mater, 2017 10;74:383-391.
    PMID: 28688321 DOI: 10.1016/j.jmbbm.2017.06.035
    The in vitro degradation and mechanical properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA)-based scaffold were investigated. In this study, composite scaffolds with PP to PLA ratios of 0%, 10%, 20%, and 30% were immersed in a PBS solution at 37°C for 40 days. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32MPa, while the compressive modulus increased from 1.73 to 5.25MPa as the fillers' content increased from 0wt% to 30wt%. Moreover, field emission scanning electron microscopy (FESEM) and X-ray diffraction were employed to observe and analyse the microstructure and fibre-matrix interface. Interestingly, the degradation rate was reduced for the PLA/PP20scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibre-matrix interface was formed in the PLA/PP20scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. The results suggest that the P. purpureum/PLA scaffold degradation rate can be altered and controlled to meet requirements imposed by a given tissue engineering application.
    Matched MeSH terms: Compressive Strength
  14. Muhammad Awaludin, M.S., Mariattia, M.
    MyJurnal
    Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. In this study, porous hydroxyapatite (HA) was produced via polymer replication method. Polyurethane (PU) sponge was selected as the template and synthetic binder, polyvinyl alcohol (PVA) was used in this study. Fixed formulation of HA powder, distilled water and PVA (40:60:3) were prepared and stirred at a constant 4 hours time. PU sponges with 30 ppi and 60 ppi size were cut and impregnated in slurry using vacuum and roller infiltration methods. The microstructures were observed by using field emission scanning electron microscope (FESEM). The results obtained indicate that vacuum infiltration method and 60 ppi template pore size exhibited the highest compressive strength with moderate average strut thickness and lowest average pore size compared to samples produced by roller infiltration method at different template pore size.
    Matched MeSH terms: Compressive Strength
  15. Ishak S, Lee HS, Singh JK, Ariffin MAM, Lim NHAS, Yang HM
    Materials (Basel), 2019 Oct 17;12(20).
    PMID: 31627479 DOI: 10.3390/ma12203404
    This paper presents the experimental results on the behavior of fly ash geopolymer concrete incorporating bamboo ash on the desired temperature (200 °C to 800 °C). Different amounts of bamboo ash were investigated and fly ash geopolymer concrete was considered as the control sample. The geopolymer was synthesized with sodium hydroxide and sodium silicate solutions. Ultrasonic pulse velocity, weight loss, and residual compressive strength were determined, and all samples were tested with two different cooling approaches i.e., an air-cooling (AC) and water-cooling (WC) regime. Results from these tests show that with the addition of 5% bamboo ash in fly ash, geopolymer exhibited a 5 MPa (53%) and 5.65 MPa (66%) improvement in residual strength, as well as 940 m/s (76%) and 727 m/s (53%) greater ultrasonic pulse velocity in AC and WC, respectively, at 800 °C when compared with control samples. Thus, bamboo ash can be one of the alternatives to geopolymer concrete when it faces exposure to high temperatures.
    Matched MeSH terms: Compressive Strength
  16. Meng Y, Ling TC, Mo KH, Tian W
    Sci Total Environ, 2019 Jun 25;671:827-837.
    PMID: 30947055 DOI: 10.1016/j.scitotenv.2019.03.411
    Carbonation for the curing of cement-based materials has been gaining increased attention in recent years, especially in light of emerging initiatives to reduce carbon dioxide (CO2) emissions. Carbonation method or CO2 curing is founded on the basis of the reaction between CO2 and cement products to form thermally stable and denser carbonate, which not only improves the physical and mechanical properties of cement-based materials, but also has the ability to utilize and store CO2 safely and permanently. This study aims to assess the effect of CO2 curing technology on the high-temperatures performance of cement blocks. Upon molding, dry-mix cement blocks were cured under statically accelerated carbonation condition (20% CO2 concentration with 70% relative humidity) for 28 days, followed by exposure to elevated temperatures of 300 °C to 800 °C in order to comprehensively study the principal phase changes and decompositions of cement hydrates. The results indicated that CO2 curing improved the performance of cement blocks, such as enhancement in the residual compressive strength and reducing the sorptivity. At 600 °C, the scanning electron microscopy (SEM) revealed a denser microstructure while thermal analisis and X-ray diffraction (XRD) analysis also clearly demonstrated that higher amounts of calcium carbonate were present in the cement blocks after CO2 curing, suggesting better high-temperature performance compared to natural cured cement blocks. In general, an improved high-temperature performance, specifically at 600 °C of the dry-mixed cement blocks was demonstrated by adopting the CO2 curing technology. This confirms the potential of utilizing CO2 curing technology in not only improving quality of cement blocks, new avenue for storing of CO2 in construction material can be realized at the same time.
    Matched MeSH terms: Compressive Strength
  17. Farrahshaida Mohd Salleh, Abu Bakar Sulong, Muhammad Rafi Raza, Norhamidi Muhamad, Lim TF
    Sains Malaysiana, 2017;46:1651-1657.
    owder injection molding (PIM) is able to produce porous titanium alloy/hydroxyapatite composite through the space holder technique. Thermal debinding and sintering processes were the main challenges due to different properties of metal and ceramic in producing such composite. This study focused on the effect of different space holders on the physical and mechanical properties of debound and sintered porous titanium aloi/hydroxyapatite composite. The feedstock is containing of 80 wt. % of titanium alloy/hydroxyapatite with 20 wt. % of space holders such as sodium chloride (NaCl) and polymethylmethacrylate (PMMA), respectively. The binders were then removed from the injected samples by two stages of debinding; solvent and thermal debinding. The sintering was performed at three different temperatures 1100oC, 1200oC and 1300oC at a heating rate of 10oC /min and holding time of 5 h. It was found that the samples containing PMMA space holder was fractured after sintering. While, the samples containing NaCl space holder successfully formed pores and not fractured. At sintering temperature of 1300oC, the density, compressive strength and porosity volume percentages for the sintered sample containing NaCl space holder were 3.05 g/cm3, 91.7 MPa. and 11.9 vol%, respectively.
    Matched MeSH terms: Compressive Strength
  18. Tanveer Ahmed Khan, Mohd Raihan Taha, Ali Asghar Firoozi, Ali Akbar Firoozi
    Sains Malaysiana, 2017;46:1269-1267.
    Environmental concerns have significantly influenced the construction industry regarding the identification and use of environmentally sustainable construction materials. In this context, enzymes (organic materials) have been introduced recently for ground improvement projects such as pavements and embankments. The present experimental study was carried out in order to evaluate the compressive strength of a sedimentary residual soil treated with three different types of enzymes, as assessed through a California bearing ratio (CBR) test. Controlled untreated and treated soil samples containing four dosages (the recommended dose and two, five and 10 times the recommended dose) were prepared, sealed and cured for four months. Following the curing period, samples were soaked in water for four days before the CBR tests were administered. These tests showed no improvement in the soil is compressive strength; in other words, samples prepared even at higher dosages did not exhibit any improvement. Nuclear magnetic resonance (NMR) spectroscopy tests were carried out on three enzymes in order to study the functional groups present in them. Furthermore, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) tests were executed for untreated and treated soil samples to determine if any chemical reaction took place between the soil and the enzymes. Neither of the tests (XRD nor FESEM) revealed any change. In fact, the XRD patterns and FESEM images for untreated and treated soil samples were indistinguishable.
    Matched MeSH terms: Compressive Strength
  19. Liew MS, Aswin M, Danyaro KU, Mohammed BS, Al-Yacouby AM
    Materials (Basel), 2020 May 26;13(11).
    PMID: 32466366 DOI: 10.3390/ma13112428
    In relation to the use of retrofit materials on damaged constructions, application on earthquake-resistant buildings, and for the strengthening and rehabilitation on weakened regions, there is a need for a more superior material than concrete. Application sites include beam-column joints, corbels, link-slabs, deep beams, support regions and dapped-end areas. Fiber reinforced engineered cementitious composites (FR-ECC) can address this issue, because FR-ECC is one of the composite materials that has high strength, ductility and durability. In order to develop FR-ECC, this study was done to investigate the effect of adding quartz powder on the compressive strength capacity and properties of FR-ECC through the use of polyvinyl alcohol (PVA) and steel fibers. The volume fraction of fiber was set to 0%-2%. To support the friendly environment, FR-ECC uses by-product materials such as fly ash and silica fume, with a cement content less than 600 kg/m3. In terms of the experimental investigation on FR-ECC, this work conducted the fresh property tests showing that PVA fibers have quite an influence on ECC workability, due to their hydrophilic behavior. By adjusting the superplasticizer (SP) content, the consistency and high workability of the ECC mixes have been achieved and maintained. The test results indicated that the PVA and steel fibers-based ECC mixes can be classified as self-compacting composites and high early compressive strength composites. Significantly, addition of quartz powder into the ECC mixes increased the compressive strength ratio of the ECC samples up to 1.0747. Furthermore, the steel fiber-based ECC samples exhibited greater compressive strength than the PVA fibers-based ECC samples with the strength ratio of 1.1760. Due to effect of the pozzolanic reaction, the fibers dispersion and orientation in the fresh ECC mixes, so that the cementitious matrices provided the high strength on the FR-ECC samples. During the compression loading, the bulging effect always occurred before the failures of the fibers-based ECC samples. No spalling occurred at the time of rupture and the collapse occurred slowly. Thus, FR-ECC has provided unique characteristics, which will reduce the high cost of maintenance.
    Matched MeSH terms: Compressive Strength
  20. Razi PZ, Abdul Razak H, Khalid NHA
    Materials (Basel), 2016 May 06;9(5).
    PMID: 28773465 DOI: 10.3390/ma9050341
    This study investigates the engineering performance and CO₂ footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO₂ footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.
    Matched MeSH terms: Compressive Strength
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links