Displaying publications 81 - 100 of 106 in total

Abstract:
Sort:
  1. Mutlaq KA, Nyangaresi VO, Omar MA, Abduljabbar ZA, Abduljaleel IQ, Ma J, et al.
    PLoS One, 2024;19(1):e0296781.
    PMID: 38261555 DOI: 10.1371/journal.pone.0296781
    The incorporation of information and communication technologies in the power grids has greatly enhanced efficiency in the management of demand-responses. In addition, smart grids have seen considerable minimization in energy consumption and enhancement in power supply quality. However, the transmission of control and consumption information over open public communication channels renders the transmitted messages vulnerable to numerous security and privacy violations. Although many authentication and key agreement protocols have been developed to counter these issues, the achievement of ideal security and privacy levels at optimal performance still remains an uphill task. In this paper, we leverage on Hamming distance, elliptic curve cryptography, smart cards and biometrics to develop an authentication protocol. It is formally analyzed using the Burrows-Abadi-Needham (BAN) logic, which shows strong mutual authentication and session key negotiation. Its semantic security analysis demonstrates its robustness under all the assumptions of the Dolev-Yao (DY) and Canetti- Krawczyk (CK) threat models. From the performance perspective, it is shown to incur communication, storage and computation complexities compared with other related state of the art protocols.
    Matched MeSH terms: Electric Power Supplies
  2. Hannan MA, Hussein HA, Mutashar S, Samad SA, Hussain A
    Sensors (Basel), 2014;14(12):23843-70.
    PMID: 25615728 DOI: 10.3390/s141223843
    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.
    Matched MeSH terms: Electric Power Supplies*
  3. Basri S, Kamarudin SK, Daud WR, Yaakob Z, Kadhum AA
    ScientificWorldJournal, 2014;2014:547604.
    PMID: 24883406 DOI: 10.1155/2014/547604
    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
    Matched MeSH terms: Electric Power Supplies*
  4. Yap KS, Lim CP, Au MT
    IEEE Trans Neural Netw, 2011 Dec;22(12):2310-23.
    PMID: 22067292 DOI: 10.1109/TNN.2011.2173502
    Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.
    Matched MeSH terms: Electric Power Supplies*
  5. Samrat NH, Ahmad N, Choudhury IA, Taha Z
    PLoS One, 2015;10(6):e0130678.
    PMID: 26121032 DOI: 10.1371/journal.pone.0130678
    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.
    Matched MeSH terms: Electric Power Supplies*
  6. Chia SE, Chia KS, Ong CN
    Ann Acad Med Singap, 1991 Nov;20(6):758-61.
    PMID: 1803964
    Blood lead levels of two ethnic groups (11 Chinese and 25 Malays) of workers in a factory manufacturing lead accumulator battery were studied. The mean adjusted (for environmental lead levels, age, exposure duration and stick-years of smoking by analysis of covariance) blood lead level of the Malays was 34.8 micrograms/dl as compared to 22.4 micrograms/dl for the Chinese. This difference was significant (p less than 0.02). Oral ingestion of lead, through eating of food with hands contaminated by lead compound, among the Malay workers was suggested as a possible cause for the difference in the mean blood lead levels. Preventive measures and recommendations to overcome the problem among this particular group of workers were discussed.
    Matched MeSH terms: Electric Power Supplies*
  7. Yaghtin A, Masoudpanah SM, Hasheminiasari M, Salehi A, Safanama D, Ong CK, et al.
    Molecules, 2020 Aug 17;25(16).
    PMID: 32824503 DOI: 10.3390/molecules25163746
    In this study, Li3V2(PO4)3 (LVP) powders are prepared by a solution synthesis method. The effects of two reducing agents on crystal structure and morphology and electrochemical properties are investigated. Preliminary studies on reducing agents such as oxalic acid and citric acid, are used to reduce the vanadium (V) precursor. The oxalic acid-assisted synthesis induces smaller particles (30 nm) compared with the citric acid-assisted synthesis (70 nm). The LVP powders obtained by the oxalic acid exhibit a higher specific capacity (124 mAh g-1 at 1C) and better cycling performance (122 mAh g-1 following 50 cycles at 1C rate) than those for the citric acid. This is due to their higher electronic conductivity caused by carbon coating and downsizing the particles. The charge-discharge plateaus obtained from cyclic voltammetry are in good agreement with galvanostatic cycling profiles.
    Matched MeSH terms: Electric Power Supplies*
  8. Low FW, Chin Hock G, Kashif M, Samsudin NA, Chau CF, Indah Utami AR, et al.
    Molecules, 2020 Oct 21;25(20).
    PMID: 33096759 DOI: 10.3390/molecules25204852
    Renewable solar energy is the key target to reduce fossil fuel consumption, minimize global warming issues, and indirectly minimizes erratic weather patterns. Herein, the authors synthesized an ultrathin reduced graphene oxide (rGO) nanosheet with ~47 nm via an improved Hummer's method. The TiO2 was deposited by RF sputtering onto an rGO nanosheet with a variation of temperature to enhance the photogenerated electron or charge carrier mobility transport for the photoanode component. The morphology, topologies, element composition, crystallinity as well as dye-sensitized solar cells' (DSSCs) performance were determined accordingly. Based on the results, FTIR spectra revealed presence of Ti-O-C bonds in every rGO-TiO2 nanocomposite samples at 800 cm-1. Besides, XRD revealed that a broad peak of anatase TiO2 was detected at ~25.4° after incorporation with the rGO. Furthermore, it was discovered that sputtering temperature of 120 °C created a desired power conversion energy (PCE) of 7.27% based on the J-V plot. Further increase of the sputtering temperature to 160 °C and 200 °C led to excessive TiO2 growth on the rGO nanosheet, thus resulting in undesirable charge recombination formed at the photoanode in the DSSC device.
    Matched MeSH terms: Electric Power Supplies*
  9. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
    Matched MeSH terms: Electric Power Supplies*
  10. Reshak AH, Shahimin MM, Shaari S, Johan N
    Prog Biophys Mol Biol, 2013 Nov;113(2):327-32.
    PMID: 24139943 DOI: 10.1016/j.pbiomolbio.2013.10.002
    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells.
    Matched MeSH terms: Electric Power Supplies*
  11. Mahamad Yusoff NF, Idris NH, Md Din MF, Majid SR, Harun NA, Rahman MM
    ACS Omega, 2020 Nov 17;5(45):29158-29167.
    PMID: 33225147 DOI: 10.1021/acsomega.0c03888
    Mn3O4 is considered to be a promising anode material for sodium-ion batteries (SIBs) because of its low cost, high capacity, and enhanced safety. However, the inferior cyclic stability of the Mn3O4 anode is a major challenge for the development of SIBs. In this study, a one-step solvothermal method was established to produce nanostructured Mn3O4 with an average particle size of 21 nm and a crystal size of 11 nm. The Mn3O4 obtained exhibits a unique architecture, consisting of small clusters composed of numerous tiny nanoparticles. The Mn3O4 material could deliver high capacity (522 mAh g-1 at 100 mA g-1), reasonable cyclic stability (158 mAh g-1 after 200 cycles), and good rate capability (73 mAh g-1 at 1000 mA g-1) even without further carbon coating, which is a common exercise for most anode materials so far. The sodium insertion/extraction was also confirmed by a reversible conversion reaction by adopting an ex situ X-ray diffraction technique. This simple, cost-effective, and environmentally friendly synthesis technique with good electrochemical performance shows that the Mn3O4 nanoparticle anode has the potential for SIB development.
    Matched MeSH terms: Electric Power Supplies
  12. Suhaimi NS, Md Din MF, Ishak MT, Abdul Rahman AR, Mohd Ariffin M, Hashim N', et al.
    Sci Rep, 2020 Dec 02;10(1):20984.
    PMID: 33268816 DOI: 10.1038/s41598-020-77810-8
    In this paper, the electrical, dielectric, Raman and small angle X-ray scattering (SAXS) structure behavior of disposed transformer oil in the presence of multi-walled carbon nanotube (MWCNT) were systematically tested to verify their versatility for preparing better alternative transformer oil in future. MWCNT nanofluids are prepared using a two-step method with concentrations ranging from 0.00 to 0.02 g/L. The test results reveal that 0.005 g/L concentration possesses the most optimum performance based on the electrical (AC breakdown and lightning impulse) and dielectric (permittivity, dissipation factor and resistivity) behavior. According to the trend of AC breakdown strength and lightning impulse pattern, there were 212.58% and 40.01% enhancement indicated for 0.005 g/L concentration compared to the disposed transformer oil. The presence of MWCNT also yielding to the decrement of dissipation factor, increased on permittivity and resistivity behavior of disposed transformer oil which reflected to the performance of electrical properties. Furthermore, it is found that these features correlated to the structural properties as systematically verify by Raman and SAXS analysis study.
    Matched MeSH terms: Electric Power Supplies
  13. Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ
    Nanoscale, 2019 Jan 23;11(4):1475-1504.
    PMID: 30620019 DOI: 10.1039/c8nr08738e
    Metal-free carbonaceous nanomaterials have witnessed a renaissance of interest due to the surge in the realm of nanotechnology. Among myriads of carbon-based nanostructures with versatile dimensionality, one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) carbon dots (CDs) have grown into a research frontier in the past few decades. With extraordinary mechanical, thermal, electrical and optical properties, CNTs are utilized in transparent displays, quantum wires, field emission transistors, aerospace materials, etc. Although CNTs possess diverse characteristics, their most attractive property is their unique photoluminescence. On the other hand, another growing family of carbonaceous nanomaterials, which is CDs, has drawn much research attention due to its cost-effectiveness, low toxicity, environmental friendliness, fluorescence, luminescence and simplicity to be synthesized and functionalized with surface passivation. Benefiting from these unprecedented properties, CDs have been widely employed in biosensing, bioimaging, nanomedicine, and catalysis. Herein, we have systematically presented the fascinating properties, preparation methods and multitudinous applications of CNTs and CDs (including graphene quantum dots). We will discuss how CNTs and CDs have emerged as auspicious nanomaterials for potential applications, especially in electronics, sensors, bioimaging, wearable devices, batteries, supercapacitors, catalysis and light-emitting diodes (LEDs). Last but not least, this review is concluded with a summary, outlook and invigorating perspectives for future research horizons in this emerging platform of carbonaceous nanomaterials.
    Matched MeSH terms: Electric Power Supplies
  14. Das L, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rubbi F
    Nanomaterials (Basel), 2020 Jul 14;10(7).
    PMID: 32674465 DOI: 10.3390/nano10071372
    In recent years, solar energy technologies have developed an emerging edge. The incessant research to develop a power source alternative to fossil fuel because of its scarcity and detrimental effects on the environment is the main driving force. In addition, nanofluids have gained immense interest as superior heat transfer fluid in solar technologies for the last decades. In this research, a binary solution of ionic liquid (IL) + water based ionanofluids is formulated successfully with two dimensional MXene (Ti3C2) nano additives at three distinct concentrations of 0.05, 0.10, and 0.20 wt % and the optimum concentration is used to check the performance of a hybrid solar PV/T system. The layered structure of MXene and high absorbance of prepared nanofluids have been perceived by SEM and UV-vis respectively. Rheometer and DSC are used to assess the viscosity and heat capacity respectively while transient hot wire technique is engaged for thermal conductivity measurement. A maximum improvement of 47% in thermal conductivity is observed for 0.20 wt % loading of MXene. Furthermore, the viscosity is found to rise insignificantly with addition of Ti3C2 by different concentrations. Conversely, viscosity decreases substantially as the temperature increases from 20 °C to 60 °C. However, based on their thermophysical properties, 0.20 wt % is found to be the optimum concentration. A comparative analysis in terms of heat transfer performance with three different nanofluids in PV/T system shows that, IL+ water/MXene ionanofluid exhibits highest thermal, electrical, and overall heat transfer efficiency compared to water/alumina, palm oil/MXene, and water alone. Maximum electrical efficiency and thermal efficiency are recorded as 13.95% and 81.15% respectively using IL + water/MXene, besides that, heat transfer coefficients are also noticed to increase by 12.6% and 2% when compared to water/alumina and palm oil/MXene respectively. In conclusion, it can be demonstrated that MXene dispersed ionanofluid might be great a prospect in the field of heat transfer applications since they can augment the heat transfer rate considerably which improves system efficiency.
    Matched MeSH terms: Electric Power Supplies
  15. Fayaz H, Afzal A, Samee ADM, Soudagar MEM, Akram N, Mujtaba MA, et al.
    PMID: 33935484 DOI: 10.1007/s11831-021-09571-0
    Covid-19 has given one positive perspective to look at our planet earth in terms of reducing the air and noise pollution thus improving the environmental conditions globally. This positive outcome of pandemic has given the indication that the future of energy belong to green energy and one of the emerging source of green energy is Lithium-ion batteries (LIBs). LIBs are the backbone of the electric vehicles but there are some major issues faced by the them like poor thermal performance, thermal runaway, fire hazards and faster rate of discharge under low and high temperature environment,. Therefore to overcome these problems most of the researchers have come up with new methods of controlling and maintaining the overall thermal performance of the LIBs. The present review paper mainly is focused on optimization of thermal and structural design parameters of the LIBs under different BTMSs. The optimized BTMS generally demonstrated in this paper are maximum temperature of battery cell, battery pack or battery module, temperature uniformity, maximum or average temperature difference, inlet temperature of coolant, flow velocity, and pressure drop. Whereas the major structural design optimization parameters highlighted in this paper are type of flow channel, number of channels, length of channel, diameter of channel, cell to cell spacing, inlet and outlet plenum angle and arrangement of channels. These optimized parameters investigated under different BTMS heads such as air, PCM (phase change material), mini-channel, heat pipe, and water cooling are reported profoundly in this review article. The data are categorized and the results of the recent studies are summarized for each method. Critical review on use of various optimization algorithms (like ant colony, genetic, particle swarm, response surface, NSGA-II, etc.) for design parameter optimization are presented and categorized for different BTMS to boost their objectives. The single objective optimization techniques helps in obtaining the optimal value of important design parameters related to the thermal performance of battery cooling systems. Finally, multi-objective optimization technique is also discussed to get an idea of how to get the trade-off between the various conflicting parameters of interest such as energy, cost, pressure drop, size, arrangement, etc. which is related to minimization and thermal efficiency/performance of the battery system related to maximization. This review will be very helpful for researchers working with an objective of improving the thermal performance and life span of the LIBs.
    Matched MeSH terms: Electric Power Supplies
  16. Harnois M, Himdi M, Yong WY, Rahim SKA, Tekkouk K, Cheval N
    Sci Rep, 2020 Feb 03;10(1):1714.
    PMID: 32015444 DOI: 10.1038/s41598-020-58657-5
    Manufacturing an array of high-quality metallic pattern layers on a dielectric substrate remains a major challenge in the development of flexible and 3-D frequency selective surfaces (FSS). This paper proposes an improved fabrication solution for the 3-D FSS based on water transfer printing (WTP) technology. The main advantages of the proposed solution are its ability to transform complicated 2-D planar FSS patterns into 3-D structures while improving both manufacturing quality and production costs. WTP technology makes use of water surface tension to keep the thin metallic patterns of the proposed FSS floating flat with the absence of a solid planar substrate. This feature enables these metallic FSS patterns to be transferred onto 3-D structures through a dipping process. To test the effectiveness of the proposed technique, the FSS was designed using computer simulation software Microwave Studio to obtain the numerical performance of the FSS structure. The WTP technology was then used to fabricate the proposed FSS prototype before its performance was tested experimentally. The measurement results agreed well with the numerical results, indicating the proposed manufacturing solution would support the development of complicated 3-D electronics devices, such as conformal antenna arrays and metamaterials.
    Matched MeSH terms: Electric Power Supplies
  17. SITI RABIATUL ADAWIYAH MAZLI, HANIS MOHD YUSOFF, NURUL HAYATI IDRIS
    MyJurnal
    Synthesis of nanoparticles by using plant have sparked interest among researchers due to environmentally safe, inexpensive and simple method to compare with chemical method. Use of plant in synthesis zinc oxide nanoparticles (ZnO NPs) that act as reducing and capping agent are more recommended, due to high production of product and rate of synthesis is faster than using microorganism. This study focus on the synthesis of ZnO NPs by using leaf extract of aloe vera (Aloe bardenisis miller) with different concentration (30%, 40% and 50%) and various calcination temperature which are 500 ˚C, 700 ˚C and 900 ˚C for 4 hours. Fourier – transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Brunauer-Emmet and Teller (BET) were used to characterize the prepared samples. FTIR spectra showed present wavenumber in between 400-500 cm-1 indicated the presence of Zn-O stretch. Powder XRD pattern confirmed the hexagonal wurtzite structure with average particles size from 24.19 nm to 67.69 nm for all concentration and temperature by using Scherer’s equation. For SEM analysis the images show irregular shape for concentrations 30% and 50% with size range from 500 nm to 900 nm while for concentration 40% cubic shape was observe with size range from 140 nm to 900 nm. All characterize show that formation of ZnO NPs depend on the concentration and calcination temperature. Sample 30% and 50% ZnO NPs was applied in lithium battery at voltage from 0.01 to 3. 1.2 mAhg-1 was recorded for sample 30% ZnO NPs while 100 mAhg-1.
    Matched MeSH terms: Electric Power Supplies
  18. Hosseini S, Han SJ, Arponwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Jul 26;8(1):11273.
    PMID: 30050161 DOI: 10.1038/s41598-018-29630-0
    Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
    Matched MeSH terms: Electric Power Supplies
  19. Hosseini S, Lao-Atiman W, Han SJ, Arpornwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Oct 08;8(1):14909.
    PMID: 30297883 DOI: 10.1038/s41598-018-32806-3
    Zinc-air batteries are a promising technology for large-scale electricity storage. However, their practical deployment has been hindered by some issues related to corrosion and passivation of the zinc anode in an alkaline electrolyte. In this work, anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Pluronic F-127 (P127) are examined their applicability to enhance the battery performances. Pristine zinc granules in 7 M KOH, pristine zinc granules in 0-8 mM SDS/7 M KOH, pristine zinc granules in 0-1000 ppm P127/7 M KOH, and SDS coated zinc granules in 7 M KOH were examined. Cyclic voltammograms, potentiodynamic polarization, and electrochemical impedance spectroscopy confirmed that using 0.2 mM SDS or 100 ppm P127 effectively suppressed the anode corrosion and passivation. Nevertheless, direct coating SDS on the zinc anode showed adverse effects because the thick layer of SDS coating acted as a passivating film and blocked the removal of the anode oxidation product from the zinc surface. Furthermore, the performances of the zinc-air flow batteries were studied. Galvanostatic discharge results indicated that the improvement of discharge capacity and energy density could be sought by the introduction of the surfactants to the KOH electrolyte. The enhancement of specific discharge capacity for 30% and 24% was observed in the electrolyte containing 100 ppm P127 and 0.2 mM SDS, respectively.
    Matched MeSH terms: Electric Power Supplies
  20. Shrestha R, Subedi DP, Gurung JP, Wong CS
    Sains Malaysiana, 2016;45:1689-1696.
    The development of a non-thermal plasma jet with a capillary configuration working at atmospheric pressure is reported
    in this paper. The plasma jet is powered by a power source with frequency of several kilohertz. The working gas is
    argon. The plasma obtained has been characterized by optical emission spectroscopic measurements and electrical
    measurements of the discharge using voltage and current probes. The electron temperature has been estimated by using
    the modified Boltzmann plot method utilizing the Ar 4p-4s transition. The electron temperatures at various positions
    along the plasma jet length have been obtained and it is found that the electron temperature decreases at position further
    from orifice. The electron density has been estimated from current and voltage measurements using the power balance
    method. The effects of gas flow rate, applied voltage and frequency on the characteristics of the plasma jet have also been
    investigated. The applications of the atmospheric pressure plasma jet (APPJ) developed to modify the surface properties
    of Polyethyleneterephthalate (PET) and polycarbonate (PC) have been tested. Our results showed that the atmospheric
    pressure non-thermal plasma jet can be effectively used to enhance the surface wettability and surface energy of the
    PET and PC. The plasma jet has also been tested for inactivation of prokaryotic cells (Escherichia coli, Staphylococcus
    aureus). In the case of E. coli, better than 4 log10 reduction can be achieved. The effect of plasma jet on the pH of cell
    culture medium has suggested that the plasma species, particularly the electrons, are solely responsible for the effect
    of inactivation of living cells.
    Matched MeSH terms: Electric Power Supplies
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links