Displaying publications 81 - 100 of 470 in total

Abstract:
Sort:
  1. Hassan H, Jin B, Dai S
    Environ Technol, 2021 Apr 01.
    PMID: 33749543 DOI: 10.1080/09593330.2021.1907451
    The interactions within microbial, chemical and electronic elements in microbial fuel cell (MFC) system can be crucial for its bio-electrochemical activities and overall performance. Therefore, this study explored polynomial models by response surface methodology (RSM) to better understand interactions among anode pH, cathode pH and inoculum size for optimising MFC system for generation of electricity and degradation of 2,4-dichlorophenol. A statistical central composite design by RSM was used to develop the quadratic model designs. The optimised parameters were determined and evaluated by statistical results and the best MFC systematic outcomes in terms of current generation and chlorophenol degradation. Statistical results revealed that the optimum current density of 106 mA/m2 could be achieved at anode pH 7.5, cathode pH 6.3-6.6 and 21-28% for inoculum size. Anode-cathode pHs interaction was found to positively influence the current generation through extracellular electron transfer mechanism. The phenolic degradation was found to have lower response using these three parameter interactions. Only inoculum size-cathode pH interaction appeared to be significant where the optimum predicted phenolic degradation could be attained at pH 7.6 for cathode pH and 29.6% for inoculum size.
    Matched MeSH terms: Electrodes
  2. Hutagalung SD, Kam CL, Darsono T
    Sains Malaysiana, 2014;43:267-272.
    Many techniques have been applied to fabricate nanostructures via top-down approach such as electron beam lithography. However, most of the techniques are very complicated and involves many process steps, high cost operation as well as the use of hazardous chemicals. Meanwhile, atomic force microscopy (AFM) lithography is a simple technique which is considered maskless and involves only an average cost and less complexity. In AFM lithography, the movement of a probe tip can be controlled to create nanoscale patterns on sample surface. For silicon nanowire (SiNW) fabrication, a conductive tip was operated in non-contact AFM mode to grow nanoscale oxide patterns on silicon-on-insulator (SOI) wafer surface based on local anodic oxidation (LAO) mechanism. The patterned structure was etched through two steps of wet etching processes. First, the TMAH was used as the etchant solution for Si removing. In the second step, diluted HF was used to remove oxide mask in order to produce a completed SiNW based devices. A SiNW based device which is formed by a nanowire channel, source and drain pads with lateral gate structures can be fabricated by well controlling the lithography process (applied tip voltage and writing speed) as well as the etching processes.
    Matched MeSH terms: Electrodes
  3. Kardi SN, Ibrahim N, Rashid NA, Darzi GN
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3358-64.
    PMID: 26490910 DOI: 10.1007/s11356-015-5538-8
    Microbial fuel cells (MFCs) represent one of the most attractive and eco-friendly technologies that convert chemical bond energy derived from organic matter into electrical power by microbial catabolic activity. This paper presents the use of a H-type MFC involving a novel NAR-2 bacterial consortium consisting of Citrobacter sp. A1, Enterobacter sp. L17 and Enterococcus sp. C1 to produce electricity whilst simultaneously decolourising acid red 27 (AR27) as a model dye, which is also known as amaranth. In this setup, the dye AR27 is mixed with modified P5 medium (2.5 g/L glucose and 5.0 g/L nutrient broth) in the anode compartment, whilst phosphate buffer solution (PBS) pH 7 serves as a catholyte in the cathode compartment. After several electrochemical analyses, the open circuit voltage (OCV) for 0.3 g/L AR27 with 24-h retention time at 30 °C was recorded as 0.950 V, whereas (93%) decolourisation was achieved in 220-min operation. The maximum power density was reached after 48 h of operation with an external load of 300 Ω. Scanning electron microscopy (SEM) analysis revealed the surface morphology of the anode and the bacterial adhesion onto the electrode surface. The results of this study indicate that the decolourisation of AR27 dye and electrical power generation was successfully achieved in a MFC operated by a bacterial consortium. The consortium of bacteria was able to utilise AR27 in a short retention time as an electron acceptor and to shuttle the electrons to the anode surface for bioelectricity generation.
    Matched MeSH terms: Electrodes
  4. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21201-21215.
    PMID: 31115820 DOI: 10.1007/s11356-019-05204-z
    One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 μ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.
    Matched MeSH terms: Electrodes
  5. Erabee IK, Ahsan A, Jose B, Arunkumar T, Sathyamurthy R, Idrus S, et al.
    PMID: 28471297 DOI: 10.1080/10934529.2017.1303309
    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate.
    Matched MeSH terms: Electrodes
  6. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM
    Bioresour Technol, 2008 Sep;99(13):5786-92.
    PMID: 18023577
    In this study, the kinetics of adsorption of Pb(II) from aqueous solution onto palm shell-based activated carbon (PSAC) were investigated by employing ion selective electrode (ISE) for real-time Pb(II) and pH monitoring. Usage of ISE was very appropriate for real-time adsorption kinetics data collection as it facilitated recording of adsorption data at very specific and short time intervals as well as provided consistent kinetics data. Parameters studied were initial Pb(II) concentration and agitation speed. It was found that increases in initial Pb(II) concentration and agitation speed resulted in higher initial rate of adsorption. Pseudo first-order, pseudo second-order, Elovich, intraparticle diffusion and liquid film diffusion models were used to fit the adsorption kinetics data. It was suggested that chemisorption was the rate-controlling step for adsorption of Pb(II) onto PSAC since the adsorption kinetics data fitted both the pseudo second-order and Elovich models well.
    Matched MeSH terms: Electrodes
  7. Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5168-5178.
    PMID: 27221586 DOI: 10.1007/s11356-016-6909-5
    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm(2)), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm(2), electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
    Matched MeSH terms: Electrodes
  8. Naderipour A, Abdul-Malek Z, Hajivand M, Seifabad ZM, Farsi MA, Nowdeh SA, et al.
    Sci Rep, 2021 Feb 01;11(1):2728.
    PMID: 33526829 DOI: 10.1038/s41598-021-82440-9
    In this paper, the optimal allocation of constant and switchable capacitors is presented simultaneously in two operation modes, grid-connected and islanded, for a microgrid. Different load levels are considered by employing non-dispatchable distributed generations. The objective function includes minimising the energy losses cost, the cost of peak power losses, and the cost of the capacitor. The optimization problem is solved using the spotted hyena optimizer (SHO) algorithm to determine the optimal size and location of capacitors, considering different loading levels and the two operation modes. In this study, a three-level load and various types of loads, including constant power, constant current, and constant impedance are considered. The proposed method is implemented on a 24-bus radial distribution network. To evaluate the performance of the SHO, the results are compared with GWO and the genetic algorithm (GA). The simulation results demonstrate the superior performance of the SHO in reducing the cost of losses and improving the voltage profile during injection and non-injection of reactive power by distributed generations in two operation modes. The total cost and net saving values for DGs only with the capability of active power injection is achieved 105,780 $ and 100,560.54 $, respectively and for DGs with the capability of active and reactive power injection is obtained 89,568 $ and 76,850.46 $, respectively using the SHO. The proposed method has achieved more annual net savings due to the lower cost of losses than other optimization methods.
    Matched MeSH terms: Electrodes
  9. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M
    Nanoscale Res Lett, 2013;8(1):397.
    PMID: 24059434 DOI: 10.1186/1556-276X-8-397
    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
    Matched MeSH terms: Electrodes
  10. Al-Quraishi MS, Elamvazuthi I, Tang TB, Al-Qurishi M, Adil SH, Ebrahim M
    Brain Sci, 2021 May 27;11(6).
    PMID: 34071982 DOI: 10.3390/brainsci11060713
    Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have temporal and spatial characteristics that may complement each other and, therefore, pose an intriguing approach for brain-computer interaction (BCI). In this work, the relationship between the hemodynamic response and brain oscillation activity was investigated using the concurrent recording of fNIRS and EEG during ankle joint movements. Twenty subjects participated in this experiment. The EEG was recorded using 20 electrodes and hemodynamic responses were recorded using 32 optodes positioned over the motor cortex areas. The event-related desynchronization (ERD) feature was extracted from the EEG signal in the alpha band (8-11) Hz, and the concentration change of the oxy-hemoglobin (oxyHb) was evaluated from the hemodynamics response. During the motor execution of the ankle joint movements, a decrease in the alpha (8-11) Hz amplitude (desynchronization) was found to be correlated with an increase of the oxyHb (r = -0.64061, p < 0.00001) observed on the Cz electrode and the average of the fNIRS channels (ch28, ch25, ch32, ch35) close to the foot area representation. Then, the correlated channels in both modalities were used for ankle joint movement classification. The result demonstrates that the integrated modality based on the correlated channels provides a substantial enhancement in ankle joint classification accuracy of 93.01 ± 5.60% (p < 0.01) compared with single modality. These results highlight the potential of the bimodal fNIR-EEG approach for the development of future BCI for lower limb rehabilitation.
    Matched MeSH terms: Electrodes
  11. Mousazadeh M, Niaragh EK, Usman M, Khan SU, Sandoval MA, Al-Qodah Z, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43143-43172.
    PMID: 34164789 DOI: 10.1007/s11356-021-14631-w
    Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
    Matched MeSH terms: Electrodes
  12. Hatamluyi B, Lorestani F, Es'haghi Z
    Biosens Bioelectron, 2018 Nov 30;120:22-29.
    PMID: 30144642 DOI: 10.1016/j.bios.2018.08.008
    The simultaneous measurement of the concentration of anticancer drugs with a fast, sensitive and accurate method in biological samples is a challenge for better monitoring of drug therapy and better determine the pharmacokinetics. An electrochemical sensor was developed for the simultaneous determination of anticancer drugs, Ifosfamide (IFO) and Etoposide (ETO) based on pencil graphite electrode modified with Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to study the properties of the modified electrode. The electrochemical behavior of IFO and ETO on the Au/Pd@rGO@p(L-Cys) modified electrode was investigated by cyclic voltammetry and differential pulse voltammetry (DPV) techniques and the obtained results confirmed its efficiency for the individual and simultaneous sensing of IFO and ETO. After optimization of electrochemical parameters, the fabricated sensor presented excellent performance in simultaneous determination of IFO and ETO with a wide linear range from 0.10 to 90.0 μM and 0.01 to 40.0 μM and low detection limits (3 Sb/m) of 9.210 nM and 0.718 nM, respectively. In addition, this study proved that the constructed sensor could be useful to simultaneous analysis of IFO and ETO in biological samples and pharmaceutical compounds.
    Matched MeSH terms: Electrodes
  13. Al-Qazzaz NK, Bin Mohd Ali SH, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2015;15(11):29015-35.
    PMID: 26593918 DOI: 10.3390/s151129015
    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
    Matched MeSH terms: Electrodes
  14. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2017 Jun 08;17(6).
    PMID: 28594352 DOI: 10.3390/s17061326
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
    Matched MeSH terms: Electrodes
  15. Kho SK, Keeble D, Wong HK, Estudillo AJ
    Soc Neurosci, 2023 Dec;18(6):393-406.
    PMID: 37840302 DOI: 10.1080/17470919.2023.2263924
    Successful face recognition is important for social interactions and public security. Although some preliminary evidence suggests that anodal and cathodal transcranial direct current stimulation (tDCS) might modulate own- and other-race face identification, respectively, the findings are largely inconsistent. Hence, we examined the effect of both anodal and cathodal tDCS on the recognition of own- and other-race faces. Ninety participants first completed own- and other-race Cambridge Face Memory Test (CFMT) as baseline measurements. Next, they received either anodal tDCS, cathodal tDCS or sham stimulation and finally they completed alternative versions of the own- and other-race CFMT. No difference in performance, in terms of accuracy and reaction time, for own- and other-race face recognition between anodal tDCS, cathodal tDCS and sham stimulation was found. Our findings cast doubt upon the efficacy of tDCS to modulate performance in face identification tasks.
    Matched MeSH terms: Electrodes
  16. Syed Baharom Syed Osman, Mohammad Nabil Fikri, Fahad Irfan Siddique
    MyJurnal
    The long term objective of this research is to look into the possibility of replacing soil strength parameters such as cohesion and angle of friction with electrical resistivity value for the purpose of computing among others, factor of safety in slopes or bearing capacity of soil. This paper however is limited to the investigation of correlation between electrical resistivity with some selected soil parameters. Electrical resistivity tests, using a basic multi meter, steel moulds and other related equipment, were conducted in the laboratory on soil samples with variations in soil type, compaction energy and moisture content. The samples consisted of predominantly clay, silt and sandy size particles and were compacted in a 100 x 100 mm square mould, while the corresponding electrical resistivity tests were carried out using the disc electrode method in accordance to BS 1377. The values of the electrical parameters such as voltage, current and resistance, with the corresponding value of soil parameters such as cohesion, angle of friction and moisture content, were measured and recorded. The results of the tests produced some initial crude relationships between electrical resistivity and the selected soil parameters. The strongest correlation between electrical resistivity and angle of internal friction, φ, was obtained from the clay size samples with R2 of 0.824, while the maximum correlation between electrical resistivity and moisture content again was obtained through the clay samples with R2 of 0.818. From the other results and graphs analyzed, some consistencies and specific trends of behaviour observed gave some early indications that a more detail and precise correlation between electrical resistivity and soil strength parameters could be very well possible in future.
    Matched MeSH terms: Electrodes
  17. Ali, A.H.M., Sobri, S., Salmiaton, A., Faizah, M.Y.
    MyJurnal
    The process of etching is the most crucial part of the work of manufacturing printed circuit boards (PCB). In the etching process by nitric acid, a spent etching waste solution of composition 250 g/L HNO3, 30-40 g/L Cu, 30-40 g/L Sn, 30-40 g/L Pb and 20-25 g/L Fe is produced. High metal concentrations in the spent etching waste solution make it a viable candidate for the recovery of metals. Recovery of metals from spent etching waste solution is a significant concern as the recent growth in production of printed circuit boards has generated a drastic increase of spent etching waste solution each year. This study concerns itself with the recovery of metals from spent etching waste. In this study a dilution was made in order to increase the pH of the solution as spent etching waste solution has high acidity, and the electrowinning method was performed to recover metals from the spent etching waste solution. Glassy carbon and platinum were used as cathode and anode in order to investigate the electrodeposition of metals and cyclic voltammetry investigation suggests that the deposition of metals on glassy carbon electrodes occurs at four different overpotentials mainly at -0.15 V, -0.35 V, -0.45 V and -0.75 V. Microscopy observation demonstrates that there is a deposition of metals by applying the potentials in a set of current-time transient study for a duration of 60 seconds and the metals recovered formed as aggregates.
    Matched MeSH terms: Electrodes
  18. Bashir MJ, Isa MH, Kutty SR, Awang ZB, Aziz HA, Mohajeri S, et al.
    Waste Manag, 2009 Sep;29(9):2534-41.
    PMID: 19523802 DOI: 10.1016/j.wasman.2009.05.004
    This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na(2)SO(4) (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na(2)SO(4) concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm(2) current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.
    Matched MeSH terms: Electrodes
  19. Chitturi V, Farrukh N
    J Electr Bioimpedance, 2019 Jan;10(1):96-102.
    PMID: 33584889 DOI: 10.2478/joeb-2019-0014
    Electrical impedance tomography (EIT) has a large potential as a two dimensional imaging technique and is gaining attention among researchers across various fields of engineering. Beamforming techniques stem from the array signal processing field and is used for spatial filtering of array data to evaluate the location of objects. In this work the circular electrodes are treated as an array of sensors and beamforming technique is used to localize the object(s) in an electrical field. The conductivity distributions within a test tank is obtained by an EIT system in terms of electrode voltages. These voltages are then interpolated using elliptic partial differential equations. Finally, a narrowband beamformer detects the peak in the output response signal to localize the test object(s). Test results show that the beamforming technique can be used as a secondary method that may provide complementary information about accurate position of the test object(s) using an eight electrode EIT system. This method could possibly open new avenues for spatial EIT data filtering techniques with an understanding that the inverse problem is more likely considered here as a source localization algorithm instead as an image reconstruction algorithm.
    Matched MeSH terms: Electrodes
  20. Jiajia L, Azlin Suhaida Azmi, Kim Minsoo P, Fathilah Ali
    Sains Malaysiana, 2017;46:1097-1102.
    Polymer-based nanocomposites have attracted a lot of attention for amperometric biosensor development due to their general physical and chemical properties including biocompatibility, film-forming ability, stability and different functional groups that can be bonded with other biomolecues. In this study, poly-4-vinlyridine homopolymer (P4VP) and polylactic acid-block-poly(2-vinylpyridine) block copolymer (PLA-b-P2VP) were used to hybridize with gold precursors (Au3+) based on the association between the nitrogen of the pyridine group of P4VP or P2VP block with gold precursors. P4VP/Au3+ and PLA-b-P2VP/Au3+ nanocomposites were prepared with ratio of gold to P2VP or P4VP (10:1). The Au3+ in both polymers was reduced to gold nanoparticles (AuNPs) via in-situ approach by using hydrazine. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM) and cyclic voltammetry (CV) were used to characterize the structural, morphological and electrochemical properties of the nanocomposites. The peak currents of P4VP/AuNPs and PLA-b-P2VP/AuNPs nanocomposites modified electrode were 6.685 nA and 69.432 nA, respectively, which are much lower than bare electrode (205.019 nA) due to the non-conductivity of P4VP and PLA-b-P2VP. In order to improve the electron transfer capability of electrode, graphene oxide (GO) was blended and electrochemically reduced to obtain P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites. After immobilization of these two nanocomposites on electrode through drop casting method, the peak currents of P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites modified electrode were 871.172 nA and 663.947 nA, respectively, which are much higher than bare electrode (205.019 nA) and shown good capability to accelerate electron transfer. Based on these characterizations, P4VP/AuNPs/rGO has potential as the nanocomposite to modify the electrode for enzymatic biosensor development.
    Matched MeSH terms: Electrodes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links