DESIGN: Cross-sectional analysis.
SETTING: The Malaysian Health and Adolescents Longitudinal Research Team (MyHeART) study.
PARTICIPANTS: Fifteen-year-old secondary school children who have given consent and who participated in the MyHeART study in 2014.
PRIMARY OUTCOME MEASURE: Muscle strength was measured in relation to dietary intake (energy and macronutrients) and physical activity by using a hand grip dynamometer.
RESULTS: Among the 1012 participants (395 male; 617 female), the hand grip strength of the males was higher than that of the females (27.08 kg vs 18.63 kg; p<0.001). Also, males were more active (2.43vs2.12; p<0.001) and consumed a higher amount of energy (2047 kcal vs 1738 kcal; p<0.001), carbohydrate (280.71 g vs 229.31 g; p<0.001) and protein (1.46 g/kg body weight (BW) vs 1.35 g/kg BW; p<0.168). After controlling for ethnicity, place of residency and body mass index, there was a positive relationship between hand grip strength and the intake of energy (r=0.14; p=0.006), carbohydrate (r=0.153; p=0.002) and fat (r=0.124; p=0.014) and the physical activity score (r=0.170; p=0.001) and a negative relationship between hand grip strength and the intake of protein (r=-0.134; p=0.008), for males. However, this was not observed among females.
CONCLUSIONS: Energy, carbohydrate and fat intakes and physical activity score were positively correlated with hand grip strength while protein intake was negatively correlated with hand grip strength in males but not in females.
OBJECTIVE: To assess the chronic effects of the substitution of refined carbohydrate or MUFA for SAFA on insulin secretion and insulin sensitivity in centrally obese subjects.
METHODS: Using a crossover design, randomized controlled trial in abdominally overweight men and women, we compared the effects of substitution of 7% energy as carbohydrate or MUFA for SAFA for a period of 6 weeks each. Fasting and postprandial blood samples in response to corresponding SAFA, carbohydrate, or MUFA-enriched meal-challenges were collected after 6 weeks on each diet treatment for the assessment of outcomes.
RESULTS: As expected, postprandial nonesterified fatty acid suppression and elevation of C-peptide, insulin and glucose secretion were the greatest with high-carbohydrate (CARB) meal. Interestingly, CARB meal attenuated postprandial insulin secretion corrected for glucose response; however, the insulin sensitivity and disposition index were not affected. SAFA and MUFA had similar effects on all markers except for fasting glucose-dependent insulinotropic peptide concentrations, which increased after MUFA but not SAFA when compared with CARB.
CONCLUSION: In conclusion, a 6-week lower-fat/higher-carbohydrate (increased by 7% refined carbohydrate) diet may have greater adverse effect on insulin secretion corrected for glucose compared with isocaloric higher-fat diets. In contrast, exchanging MUFA for SAFA at 7% energy had no appreciable adverse impact on insulin secretion.
METHODS: We studied 125 287 participants from 18 countries in North America, South America, Europe, Africa, and Asia in the Prospective Urban Rural Epidemiology (PURE) study. Habitual food intake was measured with validated food frequency questionnaires. We assessed the associations between nutrients (total fats, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, carbohydrates, protein, and dietary cholesterol) and cardiovascular disease risk markers using multilevel modelling. The effect of isocaloric replacement of saturated fatty acids with other fats and carbohydrates was determined overall and by levels of intakes by use of nutrient density models. We did simulation modelling in which we assumed that the effects of saturated fatty acids on cardiovascular disease events was solely related to their association through an individual risk marker, and then compared these simulated risk marker-based estimates with directly observed associations of saturated fatty acids with cardiovascular disease events.
FINDINGS: Participants were enrolled into the study from Jan 1, 2003, to March 31, 2013. Intake of total fat and each type of fat was associated with higher concentrations of total cholesterol and LDL cholesterol, but also with higher HDL cholesterol and apolipoprotein A1 (ApoA1), and lower triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ratio of apolipoprotein B (ApoB) to ApoA1 (all ptrend<0·0001). Higher carbohydrate intake was associated with lower total cholesterol, LDL cholesterol, and ApoB, but also with lower HDL cholesterol and ApoA1, and higher triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ApoB-to-ApoA1 ratio (all ptrend<0·0001, apart from ApoB [ptrend=0·0014]). Higher intakes of total fat, saturated fatty acids, and carbohydrates were associated with higher blood pressure, whereas higher protein intake was associated with lower blood pressure. Replacement of saturated fatty acids with carbohydrates was associated with the most adverse effects on lipids, whereas replacement of saturated fatty acids with unsaturated fats improved some risk markers (LDL cholesterol and blood pressure), but seemed to worsen others (HDL cholesterol and triglycerides). The observed associations between saturated fatty acids and cardiovascular disease events were approximated by the simulated associations mediated through the effects on the ApoB-to-ApoA1 ratio, but not with other lipid markers including LDL cholesterol.
INTERPRETATION: Our data are at odds with current recommendations to reduce total fat and saturated fats. Reducing saturated fatty acid intake and replacing it with carbohydrate has an adverse effect on blood lipids. Substituting saturated fatty acids with unsaturated fats might improve some risk markers, but might worsen others. Simulations suggest that ApoB-to-ApoA1 ratio probably provides the best overall indication of the effect of saturated fatty acids on cardiovascular disease risk among the markers tested. Focusing on a single lipid marker such as LDL cholesterol alone does not capture the net clinical effects of nutrients on cardiovascular risk.
FUNDING: Full funding sources listed at the end of the paper (see Acknowledgments).