Displaying publications 81 - 100 of 298 in total

Abstract:
Sort:
  1. Ahmad TA, Jubri Z, Rajab NF, Rahim KA, Yusof YA, Makpol S
    Molecules, 2013 Feb 11;18(2):2200-11.
    PMID: 23434870 DOI: 10.3390/molecules18022200
    The present study was designed to determine the radioprotective effects of Malaysian Gelam honey on gene expression and enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) of human diploid fibroblasts (HDFs) subjected to gamma-irradiation. Six groups of HDFs were studied: untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/mL of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma rays at the dose rate of 0.25 Gy/min. Gamma-irradiation was shown to down-regulate SOD1, SOD2, CAT and GPx1 gene expressions (p < 0.05). Conversely, HDFs treated with Gelam honey alone showed up-regulation of all genes studied. Similarly, SOD, CAT and GPx enzyme activities in HDFs decreased with gamma-irradiation and increased when cells were treated with Gelam honey (p < 0.05). Furthermore, of the three different stages of study treatment, pre-treatment with Gelam honey caused up-regulation of SOD1, SOD2 and CAT genes expression and increased the activity of SOD and CAT. As a conclusion, Gelam honey modulates the expression of antioxidant enzymes at gene and protein levels in irradiated HDFs indicating its potential as a radioprotectant agent.
    Matched MeSH terms: Fibroblasts/drug effects*; Fibroblasts/enzymology*; Fibroblasts/radiation effects
  2. Lim YH, Oo CW, Koh RY, Voon GL, Yew MY, Yam MF, et al.
    Drug Dev Res, 2020 Jul 28.
    PMID: 32720715 DOI: 10.1002/ddr.21715
    In recent years, chalcones and their derivatives have become the focus of global scientists due to increasing evidence reported towards their potency in antitumor and anti-cancer. Here, the chalcones designed and synthesized in our present study were derived from the derivatives of naphthaldehyde and acetophenone. Both these precursors have been reported in demonstrating a certain degree of anticancer property. Also, the substituents on these precursors such as hydroxyl, methoxy, prenyl, and chloro were shown able to enhance the anticancer efficiency. Hence, it is the interest of the current study to investigate the anticancer potential of the hybrid molecules (chalcones) consisting of these precursors with different alkoxy substituents and with or without the fluorine moiety. Two series of chalcone derivatives were designed, synthesized, and characterized using the elemental analysis, IR, 1 H and 13 C NMR spectroscopy, subsequently evaluated for their anti-cancer activity. Interestingly, the results showed that the fluorinated chalcones 11-15 exhibited stronger cytotoxic activity towards the breast cancer cell lines (4T1) compared to non-fluorinated chalcone derivatives. Remarkably, the selectivity index obtained for these fluorinated chalcones derivatives against the breast cancer 4T1 cell line was higher than those exhibited by cisplatin, which is one of the most frequently deployed chemotherapy agents in current medical practice. These findings could provide an insight towards the potential of fluorinated chalcones being developed as an anti-cancer agent with moderate activity towards breast cancer cell and low inhibition of fibroblast cell at a concentration of 100 μM.
    Matched MeSH terms: Fibroblasts
  3. Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ
    Asian J Pharm Sci, 2018 Jul;13(4):317-325.
    PMID: 32104405 DOI: 10.1016/j.ajps.2017.12.003
    This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4',6-diamidino-2-phenylindole and 5-ethynyl-2'-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P 
    Matched MeSH terms: Fibroblasts
  4. Camalxaman SN, Zeenathul NA, Quah YW, Loh HS, Zuridah H, Hani H, et al.
    In Vitro Cell Dev Biol Anim, 2013 Mar;49(3):238-44.
    PMID: 23435855 DOI: 10.1007/s11626-012-9553-5
    Endothelial cells have been implicated as key cells in promoting the pathogenesis and spread of cytomegalovirus (CMV) infection. This study describes the isolation and culture of rat brain endothelial cells (RBEC) and further evaluates the infectious potential of a Malaysian rat CMV (RCMV ALL-03) in these cultured cells. Brain tissues were mechanically fragmented, exposed to enzymatic digestion, purified by gradient density centrifugation, and cultured in vitro. Morphological characteristics and expression of von Willebrand factor (factor VIII-related antigen) verified the cells were of endothelial origin. RBEC were found to be permissive to the virus by cytopathic effects with detectable plaques formed within 7 d of infection. This was confirmed by electron microscopy examination which proved the existence of the viral particles in the infected cells. The susceptibility of the virus to these target cells under the experimental conditions described in this report provides a platform for developing a cell-culture-based experimental model for studies of RCMV pathogenesis and allows stimulation of further studies on host cell responses imposed by congenital viral infections.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism; Fibroblasts/virology
  5. Abdul Malik N, Mohamed M, Mustafa MZ, Zainuddin A
    J Food Biochem, 2020 01;44(1):e13098.
    PMID: 31746481 DOI: 10.1111/jfbc.13098
    This study determined the antiaging effect of stingless bee honey on the expression of extracellular matrix genes. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was performed for determination of optimum concentration and incubation time of stingless bee honey. Gene expression of matrix metalloproteinase-1 (MMP-1) and collagen type Ⅰ (COL1A1) were analyzed using real time reverse transcriptase polymerase chain reaction technique. Incubation with stingless bee honey at concentration of 0.02% for 72 hr showed significant increase in the viability of human fibroblast cells. Stingless bee honey significantly downregulates metalloproteinase-1 gene expression in both pre-senescence and senescence fibroblast cells and upregulates collagen type Ⅰ gene expression in senescence fibroblast cells. In conclusion, stingless bee honey potentially delayed skin aging through modulation of extracellular matrix genes. PRACTICAL APPLICATIONS: Changes of the extracellular matrix regulation promote skin aging. Stingless bee honey is a good source of natural antioxidant which potentially delays skin aging. This study demonstrated that stingless bee honey beneficially increases collagen type Ⅰ expression and decreases MMP-1 expression during cellular aging of human dermal fibroblast cells.
    Matched MeSH terms: Fibroblasts
  6. Mahmood, A.A., Hapipah, M.A., Noor, S.M., Kuppusamy, U.R., Salmah, I., Salmah, I., et al.
    ASM Science Journal, 2009;3(1):51-57.
    MyJurnal
    The effects of topical application of Orthosiphon stamineus leaf extract on the rate of wound healing and histology of the healed wound were assessed. Four groups of adult male Sprague Dawley rats were experimentally wounded in the posterior neck area. A thin layer of blank placebo was applied topically to wounds of Group 1 rats. Wounds of experimental animals (Group 2 and 3) were dressed with placebo containing 5% and 10% O. stamineus extract, respectively. A thin layer of Intrasite gel® was applied topically to wounds of Group 4 animals as reference. Macroscopically, wounds dressed with placebo containing 5% (healed on day 14.50 ± 0.43) and 10% (healed on day 13.83 ± 0.21) O. stamineus extract each or Intrasite gel® (healed on day 13.13 ± 0.42) significantly accelerated the rate of wound healing compared to wounds dressed with blank placebo. Histological analysis of healed wounds confirmed the results. Wounds dressed with placebo containing 5%, 10% O.stamineus or Intrasite gel® showed markedly less scar width at wound enclosure and granulating tissue contained markedly more collagen, proliferating fibroblast with angiogenesis, and no inflammatory cells compared to wounds dressed with blank placebo. In conclusion, placebo containing 5% or 10% O. stamineus on extract-dressed wounds significantly accelerated the rate of wound healing in rats.
    Matched MeSH terms: Fibroblasts
  7. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Fibroblasts/drug effects*; Fibroblasts/pathology; Fibroblasts/radiation effects*
  8. Soliman AM, Das S, Abd Ghafar N, Teoh SL
    Front Genet, 2018;9:38.
    PMID: 29491883 DOI: 10.3389/fgene.2018.00038
    Wound healing is a complex biological process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. The proliferation phase is crucial for effective healing compared to other phases. Many critical events occur during this phase, i.e., migration of fibroblasts, re-epithelialization, angiogenesis and wound contraction. Chronic wounds are common and are considered a major public health problem. Therefore, there is the increasing need to discover new therapeutic strategies. MicroRNA (miRNA) research in the field of wound healing is in its early phase, but the knowledge of the recent discoveries is essential for developing effective therapies for the treatment of chronic wounds. In this review, we focused on recently discovered miRNAs which are involved in the proliferation phase of wound healing in the past few years and their role in wound healing.
    Matched MeSH terms: Fibroblasts
  9. Amin, Z.M., Koh, S.P., Tan, C.P., Yeap, S.K., Hamid, N.S.A., Long, K.
    MyJurnal
    To study the wound healing efficacy of breadfruit starch hydrolysate, an in vitro wound scratch assay was conducted, in which the migration rate of wounded NIH 3T3 fibroblasts was determined. Wounds treated with lower dextrose equivalent (DE), (DE 10-14) starch hydrolysate were found capable to improve the wound healing of NIH 3T3 fibroblast cell with the percentage of wound closure improvement of 77%, respectively when compared with higher DE range (DE 15-19 and DE 20-24). The findings obtained in the BrdU uptake and MTT viability assays confirmed the wound healing properties of breadfruit starch hydrolysate as the starch hydrolysate-treated wounded NIH 3T3 fibroblasts were able to proliferate well and no cytotoxicity was observed. Together, these findings indicated that the newly developed breadfruit starch hydrolysate performed better than commercial (COM) starch hydrolysate of the same DE ranges. In conclusion, breadfruit starch hydrolysate had better functional properties than did starch hydrolysates derived from other sources and that they could play a beneficial role in wound healing applications.
    Matched MeSH terms: Fibroblasts
  10. Man RC, Idrus RBH, Ibrahim WIW, Saim AB, Lokanathan Y
    Adv Exp Med Biol, 2024;1450:59-76.
    PMID: 37247133 DOI: 10.1007/5584_2023_777
    Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco's Modified Eagle's Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively. SDS-PAGE was performed to detect the presence of protein bands, followed by MALDI-TOF and mass spectrometry analysis. SignalP, SecretomeP, and TMHMM were used to identify the secreted proteins in conditioned media. PANTHER Classification System was performed to categorize the protein according to protein class, whereas STRING 10 was carried out to evaluate the predicted proteins interactions. SDS-PAGE results showed the presence of various protein with molecular weight ranging from ~10 kDa to ~260 kDa. Four protein bands were identified using MALDI-TOF. The analyses identified 104, 83, and 7 secreted proteins in NFCM_FD, NFCM_DKSFM, and DKSFM, respectively. Four protein classes involved in wound healing were identified, namely calcium-binding proteins, cell adhesion molecules, extracellular matrix proteins, and signaling molecules. STRING10 protein prediction successfully identified various pathways regulated by secretory proteins in NFCM. In conclusion, this study successfully profiled the secreted proteins of nasal fibroblasts and these proteins are predicted to play important roles in RECs wound healing through various pathways.
    Matched MeSH terms: Fibroblasts
  11. Mok L, Wynne JW, Grimley S, Shiell B, Green D, Monaghan P, et al.
    J Gen Virol, 2015 Jul;96(Pt 7):1787-94.
    PMID: 25748429 DOI: 10.1099/vir.0.000112
    In recent years, bats have been identified as a natural reservoir for a diverse range of viruses. Nelson Bay orthoreovirus (NBV) was first isolated from the heart blood of a fruit bat (Pteropus poliocephalus) in 1968. While the pathogenesis of NBV remains unknown, other related members of this group have caused acute respiratory disease in humans. Thus the potential for NBV to impact human health appears plausible. Here, to increase our knowledge of NBV, we examined the replication and infectivity of NBV using different mammalian cell lines derived from bat, human, mouse and monkey. All cell lines supported the replication of NBV; however, L929 cells showed a greater than 2 log reduction in virus titre compared with the other cell lines. Furthermore, NBV did not induce major cytopathic effects in the L929 cells, as was observed in other cell lines. Interestingly, the related Pteropine orthoreoviruses, Pulau virus (PulV) and Melaka virus (MelV) were able to replicate to high titres in L929 cells but infection resulted in reduced cytopathic effect. Our study demonstrates a unique virus-host interaction between NBV and L929 cells, where cells effectively control viral infection/replication and limit the formation of syncytia. By elucidating the molecular mechanisms that control this unique relationship, important insights will be made into the biology of this fusogenic virus.
    Matched MeSH terms: Fibroblasts/virology*
  12. Lourith N, Kanlayavattanakul M, Sucontphunt A, Ondee T
    J Oleo Sci, 2014;63(7):709-16.
    PMID: 24976614
    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.
    Matched MeSH terms: Fibroblasts/drug effects
  13. Ataollahi F, Pingguan-Murphy B, Moradi A, Wan Abas WA, Chua KH, Abu Osman NA
    Cytotherapy, 2014 Aug;16(8):1145-52.
    PMID: 24831838 DOI: 10.1016/j.jcyt.2014.01.010
    Numerous protocols for the isolation of bovine aortic endothelial cells have been described in the previous literature. However, these protocols prevent researchers from obtaining the pure population of endothelial cells. Thus, this study aimed to develop a new and economical method for the isolation of pure endothelial cells by introducing a new strategy to the enzymatic digestion method proposed by previous researchers.
    Matched MeSH terms: Fibroblasts/cytology
  14. Lai PL, Naidu M, Sabaratnam V, Wong KH, David RP, Kuppusamy UR, et al.
    Int J Med Mushrooms, 2013;15(6):539-54.
    PMID: 24266378
    Neurotrophic factors are important in promoting the growth and differentiation of neurons. Nerve growth factor (NGF) is essential for the maintenance of the basal forebrain cholinergic system. Hericenones and erinacines isolated from the medicinal mushroom Hericium erinaceus can induce NGF synthesis in nerve cells. In this study, we evaluated the synergistic interaction between H. erinaceus aqueous extract and exogenous NGF on the neurite outgrowth stimulation of neuroblastoma-glioma cell NG108-15. The neuroprotective effect of the mushroom extract toward oxidative stress was also studied. Aqueous extract of H. erinaceus was shown to be non-cytotoxic to human lung fibroblast MRC-5 and NG108-15 cells. The combination of 10 ng/mL NGF with 1 μg/mL mushroom extract yielded the highest percentage increase of 60.6% neurite outgrowth. The extract contained neuroactive compounds that induced the secretion of extracellular NGF in NG108-15 cells, thereby promoting neurite outgrowth activity. However, the H. erinaceus extract failed to protect NG108-15 cells subjected to oxidative stress when applied in pre-treatment and co-treatment modes. In conclusion, the aqueous extract of H. erinaceus contained neuroactive compounds which induced NGF-synthesis and promoted neurite outgrowth in NG108-15 cells. The extract also enhanced the neurite outgrowth stimulation activity of NGF when applied in combination. The aqueous preparation of H. erinaceus had neurotrophic but not neuroprotective activities.
    Matched MeSH terms: Fibroblasts/drug effects
  15. Mohd Hilmi AB, Halim AS, Jaafar H, Asiah AB, Hassan A
    Biomed Res Int, 2013;2013:795458.
    PMID: 24324974 DOI: 10.1155/2013/795458
    Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%), longest epithelial tongue (1.62 ± 0.13 mm), and shortest migratory tongue distance (7.11 ± 0.25 mm). The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm) and chitosan skin substitute (0.16 ± 0.05 cm) were significantly decreased (P < 0.05) compared with duoderm (0.45 ± 0.11 cm). Human leukocyte antigen (HLA) expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.
    Matched MeSH terms: Fibroblasts/cytology
  16. Ng MH, Aminuddin BS, Hamizah S, Lynette C, Mazlyzam AL, Ruszymah BH
    J Tissue Viability, 2009 Nov;18(4):109-16.
    PMID: 19632116 DOI: 10.1016/j.jtv.2009.06.003
    Previous studies suggested telomerase activity as a determinant of cell replicative capacity by delaying cell senescence. This study aimed to evaluate the feasibility of adopting telomerase activity as a selection criterion for in vitro expanded skin cells before autologous transplantation. Fibroblasts and keratinoctyes were derived from the same consenting patients aged 9-69 years, and cultured separately in serum-supplemented and serum-free media, respectively. Telomerase activity of fresh and cultured cells were measured and correlated with cell growth rate, donor age and passage number. The results showed that telomerase activity and cell growth were independent of donor age for both cell types. Telomerase was expressed in freshly digested epidermis and dermis and continued expressing in vitro. Keratinocytes consistently showed 3-12 folds greater telomerase activity than fibroblast both in vivo and in vitro. Conversely, growth rate for fibroblast exceeded that of keratinocyte. Telomerase activity decreased markedly at Passage 6 for keratinocytes and ceased by Passage 3 for fibroblasts. The decrease or cessation of telomerase activity coincided with senescence for keratinocyte but not for fibroblast, implying a telomerase-regulated cell senescence for the former and hence a predictor of replicative capacity for this cell type. Relative telomerase activity for fibroblasts from the younger age group was significantly higher than that from the older age group; 69.7% higher for fresh isolates and 31.1% higher at P0 (p<0.05). No detectable telomerase activity was to be found at later subcultures for both age groups. Similarly for keratinocytes, telomerase activity in the younger age group was significantly higher (p<0.05) compared to that in the older age group; 507.7% at P0, 36.8% at P3 and the difference was no longer significant at P6. In conclusion, the study provided evidence that telomerase sustained the proliferation of keratinocytes but not fibroblasts. Telomerase activity is an important criterion for continued survival and replication of keratinocytes, hence its positive detection before transplantation is desirable. Inferring from our results, the use of keratinocytes from Passage 3 or lesser for construction of skin substitute or cell-based therapy is recommended owing to their sustained telomerase expression.
    Matched MeSH terms: Fibroblasts/enzymology*
  17. Noushad M, Kannan TP, Husein A, Abdullah H, Ismail AR
    Toxicol In Vitro, 2009 Sep;23(6):1145-50.
    PMID: 19505568 DOI: 10.1016/j.tiv.2009.05.025
    The aim of this study was to determine the genotoxicity of a locally produced dental porcelain (Universiti Sains Malaysia, Malaysia) using the Ames and Comet assays. In the Ames assay, four genotypic variants of the Salmonella strains (TA98, TA100, TA1537 and TA1535) carrying mutations in several genes were used. The dental porcelain was incubated with these four strains in five different doses both in the presence and absence of metabolic activation (S9) and the result was assessed based on the number of revertant colonies. Concurrently, appropriate positive controls were used so as to validate the test. The average number of revertant colonies per plate treated with locally produced dental porcelain was less than double as compared to that of negative control. In the Comet assay, L929 (CCL-1 ATCC, USA) mouse fibroblast cells were treated with the dental porcelain in three different concentrations along with concurrent negative and positive controls. The tail moment which was used as a measurement of DNA damage was almost equal to that of the negative control, suggesting that the locally produced dental porcelain did not induce any DNA damage. The results indicated that the locally produced dental porcelain is non-genotoxic under the present test conditions.
    Matched MeSH terms: Fibroblasts/drug effects
  18. Ferdaos N, Nathan S, Nordin N
    Med J Malaysia, 2008 Jul;63 Suppl A:75-6.
    PMID: 19024991
    Amniotic fluid (AF) serves as an excellent alternative source of pluripotent stem cells, as they are not bound with ethical issues and the stem cells are more primitive than adult stem (AS) cells. Hence, they have higher potential. Here we aim to isolate and characterize pluripotent stem cells from mid-term and full-term pregnant rat amniotic fluid. The results demonstrate the evidence of heterogeneous population of cells in the amniotic fluid and some of the cells morphology shows similarity with ES cells.
    Matched MeSH terms: Fibroblasts/cytology*
  19. Rashid SA, Halim AS, Muhammad NA
    Med J Malaysia, 2008 Jul;63 Suppl A:69-70.
    PMID: 19024988
    Basic fibroblast growth factor (bFGF) is angiogenic and effective in down-regulating excess collagen production. The aim of this study is to evaluate the effectiveness of vitamin E (Tocotrienol Rich Fraction) in altering the level of bFGF, a cytokine involved in the scar formation process. In this model, normal human fibroblasts were treated with various concentrations of vitamin E at different time frames. The levels of bFGF were determined by Enzyme-Linked Immunosorbant Assay (ELISA). This study demonstrated that Tocotrienol Rich Fraction (TRF) stimulated bFGF production by fibroblast and postulate that vitamin E may decrease aberrant scar formation.
    Matched MeSH terms: Fibroblasts/drug effects*
  20. Ibnubaidah MA, Chua KH, Mazita A, Azida ZN, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:115-6.
    PMID: 19025012
    A potential cure for hearing loss would be to regenerate hair cells by stimulating cells of the damaged inner ear sensory epithelia to proliferate and differentiate into hair cells. Here, we investigated the possibility to isolate, culture-expand and characterize the cells from the cochlea membrane of adult mice. Our results showed that the cultured cells isolated from mouse cochlea membrane were heterogenous in nature. Morphologically there were epithelial like cells, hair cell like, nerve cell like and fibroblastic cells observed in the culture. The cultured cells were immunopositive for specific hair cell markers including Myosin 7a, Calretinin and Espin.
    Matched MeSH terms: Fibroblasts/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links