Displaying publications 81 - 100 of 159 in total

Abstract:
Sort:
  1. Bujang NB, Chee CF, Heh CH, Rahman NA, Buckle MJC
    PMID: 28580889 DOI: 10.1080/19440049.2017.1336674
    Adulteration of herbal health supplements with phosphodiesterase-5 (PDE-5) inhibitors and their analogues is becoming a worldwide problem. The aim of this study was to investigate herbal and food products sold in the Malaysian market for the presence of these adulterants. Sixty-two products that claim to enhance men's sexual health were sampled between April 2014 and April 2016. These products included unregistered products seized by the Pharmacy Enforcement Division of the Ministry of Health (n = 39), products sent to the National Pharmaceutical Regulatory Agency for pre-registration testing (n = 9) and products investigated under the post-registration market surveillance programme (n = 14). The products were tested against an in-house spectral library consisting of 61 PDE-5 inhibitors and analogues using a validated liquid chromatography-mass spectrometry ion-trap-time-of-flight (LC-MS IT-TOF) method. Thirty-two (82%) of the unregistered products and two (14%) of the registered products were found to be adulterated with at least one PDE-5 inhibitor or analogue, while none of the pre-registration products contained adulterants. A total of 16 different adulterants were detected and 36% of the adulterated products contained a mixture of two or more adulterants. This study has demonstrated that the adulteration of unregistered herbal products in the Malaysian market is an alarming issue that needs to be urgently addressed by the relevant authorities.
    Matched MeSH terms: Food Contamination/analysis*
  2. Hossain MA, Ali ME, Hamid SB, Hossain SM, Asing, Nizar NN, et al.
    Food Chem, 2017 Jun 01;224:97-104.
    PMID: 28159299 DOI: 10.1016/j.foodchem.2016.12.062
    Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products.
    Matched MeSH terms: Food Contamination/analysis*
  3. Hossain MAM, Ali ME, Sultana S, Asing, Bonny SQ, Kader MA, et al.
    J Agric Food Chem, 2017 May 17;65(19):3975-3985.
    PMID: 28481513 DOI: 10.1021/acs.jafc.7b00730
    Cattle, buffalo, and porcine materials are widely adulterated, and their quantification might safeguard health, religious, economic, and social sanctity. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays have been documented but they are just suitable for identification, cannot quantify adulterations. We described here a quantitative tetraplex real-time PCR assay with TaqMan Probes to quantify contributions from cattle, buffalo, and porcine materials simultaneously. Amplicon-sizes were very short (106-, 90-, and 146-bp for cattle, buffalo, and porcine) because longer targets could be broken down, bringing serious ambiguity in molecular diagnostics. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 27 frankfurters and 27 meatballs reflected 84-115% target recovery at 0.1-10% adulterations. Finally, a test of 36 commercial products revealed 71% beef frankfurters, 100% meatballs, and 85% burgers contained buffalo adulteration, but no porcine was found in beef products.
    Matched MeSH terms: Food Contamination/analysis*
  4. Tan MSF, Rahman S, Dykes GA
    Food Microbiol, 2017 Apr;62:62-67.
    PMID: 27889167 DOI: 10.1016/j.fm.2016.10.009
    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.
    Matched MeSH terms: Food Contamination/analysis
  5. Basri KN, Hussain MN, Bakar J, Sharif Z, Khir MFA, Zoolfakar AS
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Feb 15;173:335-342.
    PMID: 27685001 DOI: 10.1016/j.saa.2016.09.028
    Short wave near infrared spectroscopy (NIR) method was used to detect the presence of lard adulteration in palm oil. MicroNIR was set up in two different scan modes to study the effect of path length to the performance of spectral measurement. Pure and adulterated palm oil sample were classified using soft independent modeling class analogy (SIMCA) algorithm with model accuracy more than 0.95 reported for both transflectance and transmission modes. Additionally, by employing partial least square (PLS) regression, the coefficient of determination (R2) of transflectance and transmission were 0.9987 and 0.9994 with root mean square error of calibration (RMSEC) of 0.5931 and 0.6703 respectively. In order to remove the uninformative variables, variable selection using cumulative adaptive reweighted sampling (CARS) has been performed. The result of R2 and RMSEC after variable selection for transflectance and transmission were improved significantly. Based on the result of classification and quantification analysis, the transmission mode has yield better prediction model compared to the transflectance mode to distinguish the pure and adulterated palm oil.
    Matched MeSH terms: Food Contamination/analysis*
  6. Abdullah R, Diaz LN, Wesseling S, Rietjens IM
    PMID: 27892830 DOI: 10.1080/19440049.2016.1266098
    After the incidences of induction of aristolochic acid nephropathy after consumption of herbal weight loss preparations that accidentally contained aristolochic acids (AAs), several countries defined national restrictions on the presence of AAs in food, including plant food supplements (PFS) and herbal products. This study investigates whether the risks associated with exposure to AAs via PFS and herbal products are at present indeed negligible. Data reported in literature on AA levels in PFS and other herbal products and also obtained from a new series of PFS in the present study were used to calculate the estimated daily intakes (EDIs) and corresponding margins of exposure (MOEs). Available literature data revealed that 206 out of 573 samples were found to contain aristolochic acid I (AAI) and/or aristolochic acid II (AAII). The results obtained from recently collected PFS revealed that both AAI and AAII were detected in three out of 18 analysed PFS at levels up to 594.8 and 235.3 µg g(-1), respectively, being in line with the levels reported in literature. The EDIs resulting from intake of these PFS resulted in MOEs that were generally below 10,000, corroborating the priority for risk management. Although these results refer to PFS collected by targeted sampling strategies, the data reveal that AA-containing PFS are still freely available. When considering that the use of these samples may be limited to shorter periods of time, the EDIs might be lower, but MOE values would still be lower than 10,000 for more than 50% of the AA-containing PFS and herbal products. In conclusion, the presence of AAs in PFS and herbal products even several years after instalment of the legal restrictions still raises concern, especially for people who frequently use the respective PFS and herbal products.
    Matched MeSH terms: Food Contamination/analysis*
  7. Nordin N, Yusof NA, Abdullah J, Radu S, Hushiarian R
    Biosens Bioelectron, 2016 Dec 15;86:398-405.
    PMID: 27414245 DOI: 10.1016/j.bios.2016.06.077
    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP.
    Matched MeSH terms: Food Contamination/analysis*
  8. Jeevanaraj P, Hashim Z, Elias SM, Aris AZ
    Environ Sci Pollut Res Int, 2016 Dec;23(23):23714-23729.
    PMID: 27619374
    We identified marine fish species most preferred by women at reproductive age in Selangor, Malaysia, mercury concentrations in the fish muscles, factors predicting mercury accumulation and the potential health risk. Nineteen most preferred marine fish species were purchased (n = 175) from selected fisherman's and wholesale market. Length, weight, habitat, feeding habit and trophic level were recognised. Edible muscles were filleted, dried at 80 °C, ground on an agate mortar and digested in Multiwave 3000 using HNO3 and H2O2. Total mercury was quantified using VP90 cold vapour system with N2 carrier gas. Certified reference material DORM-4 was used to validate the results. Fish species were classified as demersal (7) and pelagic (12) or predators (11), zoo benthos (6) and planktivorous (2). Length, weight and trophic level ranged from 10.5 to 75.0 cm, 0.01 to 2.50 kg and 2.5 to 4.5, respectively. Geometric mean of total mercury ranged from 0.21 to 0.50 mg/kg; maximum in golden snapper (0.90 mg/kg). Only 9 % of the samples exceeded the JECFA recommendation. Multiple linear regression found demersal, high trophic (≥4.0) and heavier fishes to accumulate more mercury in muscles (R (2) = 27.3 %), controlling for all other factors. About 47 % of the fish samples contributed to mercury intake above the provisional tolerable level (45 μg/day). While only a small portion exceeded the JECFA fish Hg guideline, the concentration reported may be alarming for heavy consumers. Attention should be given in risk management to avoid demersal and high trophic fish, predominantly heavier ones.
    Matched MeSH terms: Food Contamination/analysis*
  9. Asing, Ali E, Hamid SB, Hossain M, Ahamad MN, Hossain SM, et al.
    PMID: 27643977
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.
    Matched MeSH terms: Food Contamination/analysis*
  10. Abdulrauf LB, Tan GH
    J AOAC Int, 2016 Nov 01;99(6):1415-1425.
    PMID: 28206878 DOI: 10.5740/jaoacint.16-0275
    This review presents the application of carbon nanotubes as sorbent materials in the analysis of pesticide residues in fruits and vegetables. The advantages, limitations, and challenges of carbon nanotubes, with respect to their use in analytical chemistry, are presented. The efficiency of their application as extraction sorbent materials (in terms of LOD, LOQ, linearity, relative recovery, and RSD) in SPE, solid-phase microextraction, multi-plug filtration clean-up, matrix solid-phase dispersion, and the quick, easy, cheap, effective, rugged and safe method is reported. The synthesis, functionalization, purification, and characterization methods of carbon nanotubes are also discussed.
    Matched MeSH terms: Food Contamination/analysis*
  11. Lawal A, Tan GH, Alsharif AM
    J AOAC Int, 2016 Nov 01;99(6):1383-1394.
    PMID: 27667201 DOI: 10.5740/jaoacint.16-0272
    Food quality and food safety are major challenges affecting agricultural and industrial aspects of production. Many contaminants from different sources contaminate foods and drinks, leading to disastrous health problems like gene mutations and cancer. Previously, many different methods have been used for the analysis of these contaminants. Liquid-liquid extraction (LLE) has been the most well-known conventional technique used, but its limitations are its tediousness, time required, and the use of large quantities of toxic organic solvents. These limitations have led to the search for other, efficient techniques that are more environmentally friendly. Hence, this review highlights recent advances in liquid-phase (single-drop, hollow fiber, and dispersive liquid-liquid) microextraction procedures for food and drink analyses. Such modifications can be justified for solving limitations associated with the traditional LLE method. The objective of this review is to serve as a reference platform for providing effective management tools for solving problems of pollution, clean-up, and control of food quality and safety globally.
    Matched MeSH terms: Food Contamination/analysis*
  12. Cheng Z, Li HH, Wang HS, Zhu XM, Sthiannopkao S, Kim KW, et al.
    Environ Res, 2016 Oct;150:423-30.
    PMID: 27372065 DOI: 10.1016/j.envres.2016.06.011
    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μgg(-1), 0.19-1.65 (median 0.86) μgg(-1) and 0.24-3.05 (median 0.59) μgg(-1) wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8μgkg(-1) bw d(-1), respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia.
    Matched MeSH terms: Food Contamination/analysis*
  13. Tan ET, Al Jassim R, D'Arcy BR, Fletcher MT
    PMID: 27575484
    Camel meat production for human consumption and pet food manufacture accounts for a relatively small part of overall red meat production in Australia. Reliable statistical data for the Australian production and consumption of camel meat are not available; however, it is estimated that 300,000 feral camels roam within the desert of central Australia, with an annual usage of more than 3000 camels for human consumption, 2000 for pet food manufacture and a smaller number for live export. Despite a small Australian camel meat production level, the usage of camel meat for pet food has been restricted in recent years due to reports of serious liver disease and death in dogs consuming camel meat. This camel meat was found to contain residues of indospicine, a non-proteinogenic amino acid found in certain Indigofera spp., and associated with mild to severe liver disease in diverse animals after dietary exposure to this hepatotoxin. The extent of indospicine-contaminated Australian camel meat was previously unknown, and this study ascertains the prevalence of such residue in Australian camel meat. In this study, indospicine levels in ex situ (95 samples collected from an abattoir in Queensland) and in situ (197 samples collected from camels after field culling in central Australia) camel meat samples were quantitated using a validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The quantitation results showed 46.7% of the in situ- and 20.0% of the ex situ-collected camel meat samples were contaminated by indospicine (more than the limit of detection (LOD) of 0.05 mg kg(-1) fresh weight). The overall indospicine concentration was higher (p < 0.05) in the in situ-collected samples. Indospicine levels detected in the present study are considered to be low; however, a degree of caution must still be exercised, since the tolerable daily intake for indospicine is currently not available for risk estimation.
    Matched MeSH terms: Food Contamination/analysis*
  14. Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E
    Food Chem Toxicol, 2016 Sep;95:128-36.
    PMID: 27402098 DOI: 10.1016/j.fct.2016.07.004
    To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications.
    Matched MeSH terms: Food Contamination/analysis
  15. Hossain MA, Ali ME, Abd Hamid SB, Asing, Mustafa S, Mohd Desa MN, et al.
    J Agric Food Chem, 2016 Aug 17;64(32):6343-54.
    PMID: 27501408 DOI: 10.1021/acs.jafc.6b02224
    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials.
    Matched MeSH terms: Food Contamination/analysis*
  16. Vijaya Bhaskar Reddy A, Yusop Z, Jaafar J, Bin Aris A, Abdul Majid Z, Umar K, et al.
    J Sep Sci, 2016 Jun;39(12):2276-83.
    PMID: 27095506 DOI: 10.1002/jssc.201600155
    A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.
    Matched MeSH terms: Food Contamination/analysis*
  17. Rahman MM, Hamid SB, Basirun WJ, Bhassu S, Rashid NR, Mustafa S, et al.
    PMID: 26458055 DOI: 10.1080/19440049.2015.1104558
    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.
    Matched MeSH terms: Food Contamination/analysis*
  18. Asing, Ali ME, Abd Hamid SB, Hossain MA, Mustafa S, Kader MA, et al.
    PLoS One, 2016;11(10):e0163436.
    PMID: 27716792 DOI: 10.1371/journal.pone.0163436
    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.
    Matched MeSH terms: Food Contamination/analysis
  19. Nakyinsige K, Sazili AQ, Aghwan ZA, Zulkifli I, Goh YM, Abu Bakar F, et al.
    Meat Sci, 2015 Oct;108:125-31.
    PMID: 26115345 DOI: 10.1016/j.meatsci.2015.05.029
    This experiment aimed to determine microbial spoilage and lipid and protein oxidation during aerobic refrigerated (4°C) storage of rabbit meat. Forty male New Zealand white rabbits were slaughtered according to the Halal slaughter procedure. The hind limbs were used for microbial analysis while the Longissimus lumborum m. was used for determination of lipid and protein oxidation. Bacterial counts generally increased with aging time and the limit for fresh meat (10(8)cfu/g) was reached at d 7 postmortem. Significant differences in malondialdehyde content were observed after 3d of storage. The thiol concentration significantly decreased with increase in aging time. The band intensities of myosin heavy chain and troponin T significantly reduced with increased refrigerated storage while actin remained relatively stable. This study thus proposes protein oxidation as a potential deteriorative change in refrigerated rabbit meat along with microbial spoilage and lipid oxidation.
    Matched MeSH terms: Food Contamination/analysis*
  20. Yap CK, Jusoh A, Leong WJ, Karami A, Ong GH
    Environ Monit Assess, 2015 Sep;187(9):584.
    PMID: 26298187 DOI: 10.1007/s10661-015-4812-z
    Fish tilapia Oreochromis mossambicus were collected from a contaminated Seri Serdang (SS) pond potentially receiving domestic effluents and an uncontaminated pond from Universiti Putra Malaysia (UPM). The fish were dissected into four parts namely gills, muscles, intestines, and liver. All the fish parts were pooled and analyzed for the concentrations of Cd, Cu, Fe, Ni, Pb, and Zn. Generally, the concentrations of all metals were low in the edible muscle in comparison to the other parts of the fish. It was found that the levels of all the heavy metals in the different parts of fish collected from the SS were significantly (P<0.05) higher than those from UPM, indicating greater metal bioavailabilities in the SS pond. The sediment data also showed a similar pattern with significantly (P<0.05) higher metal concentrations in SS than in UPM, indicating higher metal contamination in SS. Potential health risk assessments based on provisional tolerable weekly intake (PTWI) and the amount of fish required to reach the PTWI values, estimated daily intake (EDI), and target hazard quotient (THQ) indicated that health risks associated with heavy metal exposure via consumption of the fish's muscles were insignificant to human. Therefore, the consumption of the edible muscles of tilapia from both ponds should pose no toxicological risk of heavy metals since their levels are also below the recommended safety guidelines. While it is advisable to discard the livers, gills, and intestines of the two tilapia fish populations before consumption, there were no potential human health risks of heavy metals to the consumers on the fish muscle part.
    Matched MeSH terms: Food Contamination/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links