Displaying publications 81 - 100 of 232 in total

Abstract:
Sort:
  1. Huët MAL, Wong LW, Goh CBS, Ong KS, Dwiyanto J, Reidpath D, et al.
    Braz J Microbiol, 2020 Dec;51(4):2067-2075.
    PMID: 32572838 DOI: 10.1007/s42770-020-00323-z
    Species of fungi belonging to the order Mucorales can be found everywhere in the environment. Gilbertella persicaria, which belongs to this order, have often been isolated from fruits and in water systems. However, there has been no report of isolation of this fungus from human samples. During a gut mycobiome study, from the Segamat community, Gilbertella persicaria was isolated from a human fecal sample and was characterized through a series of morphological assessment, biochemical tests, and molecular techniques. The isolate produced a white velvety surface that turned grayish after 24 h. Although no biofilm production was observed, the results indicated that the isolate could form calcium oxalate crystals, produced urease, and was resistant to low pH. The isolate was sensitive to amphotericin but resistant to voriconazole and itraconazole. The features of this fungus that could help in its survival in the human gut are also discussed.
    Matched MeSH terms: Gastrointestinal Microbiome*
  2. Ibitoye EB, Lokman IH, Hezmee MNM, Goh YM, Zuki ABZ, Jimoh AA, et al.
    Poult Sci, 2019 Feb 01;98(2):745-752.
    PMID: 30265345 DOI: 10.3382/ps/pey419
    Growth hormones (GH) alone does not explain the growth rate in the chicken as growth in an animal is multi-factorial. Normal morphology of the intestinal villus and crypt, with adequate regulation of intestinal nutrient transporters, is essential to a healthy gut. Nutrition plays a significant role in gut health management, but information on the effect of dietary chitin and chitosan on gut morphology, gene expression of nutrient transporter, and serum levels of GH in broiler chickens is scanty. Thus, this study aimed at evaluating the comparative effect of dietary chitin and chitosan from cricket and shrimp on the small intestinal morphology, relative gene expression of intestinal nutrient transporters and serum level of GH in the broiler. A total of 150 day-old male Cobb500 broiler chicks were randomly allotted to one of the five treatment groups (n = 30). Treatment 1 was fed basal diet only, treatments 2 to 5 were fed a basal diet with 0.5 g cricket chitin, cricket chitosan, shrimp chitin, and shrimp chitosan, respectively, per kg diet. At days 21 and 42, duodenal and jejunal samples were assessed for structural morphology and jejunum for the relative gene expression of PepT1, EAAT3, SGLT1, and SGLT5 using quantitative real-time PCR. Results bared that dietary cricket chitosan and shrimp chitosan significantly (P < 0.05) improved jejunal villus height and reduced crypt depth without improving the body weight (BW). The gut morphology of birds under cricket chitin was poor and significantly (P < 0.05) different from other treated groups. Both the dietary chitin and chitosan at day 21 and only dietary chitosan at day 42 significantly (P < 0.05) down-regulated the relative mRNA expression of PepT1, EAAT3, SGLT1, and SGLT5 of broiler chickens. Treated groups differ non-significantly at both phases, while cricket chitin numerically increased the relative expression of PepT1, EAAT3, and SGLT1. Therefore, the potential of cricket chitin to improve BW and to up-regulate nutrient transporters is worthy of further exploration.
    Matched MeSH terms: Gastrointestinal Microbiome
  3. Ibrahim A, Ali RAR, Manaf MRA, Ahmad N, Tajurruddin FW, Qin WZ, et al.
    PLoS One, 2020;15(12):e0244680.
    PMID: 33382780 DOI: 10.1371/journal.pone.0244680
    OBJECTIVE: We determined the effectiveness of a multi-strain probiotic (Hexbio®) containing microbial cell preparation MCP®BCMC® on constipation symptoms and gut motility in PD patients with constipation.

    METHODS: PD patients with constipation (ROME III criteria) were randomized to receive a multi-strain probiotic (Lactobacillus sp and Bifidobacterium sp at 30 X 109 CFU) with fructo-oligosaccaride or placebo (fermented milk) twice daily for 8 weeks. Primary outcomes were changes in the presence of constipation symptoms using 9 items of Garrigues Questionnaire (GQ), which included an item on bowel opening frequency. Secondary outcomes were gut transit time (GTT), quality of life (PDQ39-SI), motor (MDS-UPDRS) and non-motor symptoms (NMSS).

    RESULTS: Of 55 recruited, 48 patients completed the study: 22 received probiotic and 26 received placebo. At 8 weeks, there was a significantly higher mean weekly BOF in the probiotic group compared to placebo [SD 4.18 (1.44) vs SD 2.81(1.06); (mean difference 1.37, 95% CI 0.68, 2.07, uncorrected p<0.001)]. Patients in the probiotic group reported five times higher odds (odds ratio = 5.48, 95% CI 1.57, 19.12, uncorrected p = 0.008) for having higher BOF (< 3 to 3-5 to >5 times/week) compared to the placebo group. The GTT in the probiotic group [77.32 (SD55.35) hours] reduced significantly compared to placebo [113.54 (SD 61.54) hours]; mean difference -36.22, 95% CI -68.90, -3.54, uncorrected p = 0.030). The mean change in GTT was 58.04 (SD59.04) hour vs 20.73 (SD60.48) hours respectively (mean difference 37.32, 95% CI 4.00, 70.63, uncorrected p = 0.028). No between-groups differences were observed in the NMSS, PDQ39-SI, MDS-UPDRS II and MDS-UPDRS III scores. Four patients in the probiotics group experienced mild reversible side effects.

    CONCLUSION: This study showed that consumption of a multi-strain probiotic (Hexbio®) over 8 weeks improved bowel opening frequency and whole gut transit time in PD patients with constipation.

    Matched MeSH terms: Gastrointestinal Microbiome/drug effects*
  4. Idoui T, Karam N
    Sains Malaysiana, 2016;45:347-353.
    The objective of this study was to investigate the effect of autochthonous Lactobacillus plantarum feeding on growth performance, carcass traits, serum composition and faecal microflora of broiler chickens. The results showed a significant positive effect (p< 0.05) of probiotic on body weight and feed conversion ratio. Coliform counts in the fecal matter of broiler chickens receiving probiotic were lower than the analogous population in control birds (p<0.05). In contrary, lactic acid bacteria (LAB) number increased (p<0.05) in fecal matter of experimental group. At the end of the study, the degree of serum cholesterol reduction resulted in a 20.31% compared to the control group (p<0.05). The experimental group had significantly lower serum triglycerides (p<0.05). It was concluded that autochthonous probiotic improved growth and feed efficiency in broilers chickens and considering the improvements in carcass traits. This probiotic possess the property of reducing cholesterol and triglycerides in the blood and possess a positive effect on the gut microflora.
    Matched MeSH terms: Gastrointestinal Microbiome
  5. Ismail IH, Lay C, H A Majid N, Lee WS, Lee BW, Abdul Latiff AH, et al.
    J Allergy Clin Immunol, 2020 11;146(5):1005-1007.
    PMID: 32860819 DOI: 10.1016/j.jaci.2020.05.057
    Matched MeSH terms: Gastrointestinal Microbiome
  6. Ismail IH, Boyle RJ, Licciardi PV, Oppedisano F, Lahtinen S, Robins-Browne RM, et al.
    Pediatr Allergy Immunol, 2016 12;27(8):838-846.
    PMID: 27590263 DOI: 10.1111/pai.12646
    BACKGROUND: An altered compositional signature and reduced diversity of early gut microbiota are linked to development of allergic disease. We investigated the relationship between dominant Bifidobacterium species during the early post-natal period and subsequent development of allergic disease in the first year of life.

    METHODS: Faecal samples were collected at age 1 week, 1 month and 3 months from 117 infants at high risk of allergic disease. Bifidobacterium species were analysed by quantitative PCR and terminal restriction fragment length polymorphism. Infants were examined at 3, 6 and 12 months, and skin prick test was performed at 12 months. Eczema was diagnosed according to the UK Working Party criteria.

    RESULTS: The presence of B. catenulatum at 3 months was associated with a higher risk of developing eczema (ORadj = 4.5; 95% CI: 1.56-13.05, padj = 0.005). Infants colonized with B. breve at 1 week (ORadj = 0.29; 95% CI: 0.09-0.95, padj = 0.04) and 3 months (ORadj = 0.15; 95% CI: 0.05-0.44, padj = 0.00001) had a reduced risk of developing eczema. Furthermore, the presence of B. breve at 3 months was associated with a lower risk of atopic sensitization at 12 months (ORadj = 0.38; 95% CI: 0.15-0.98, padj = 0.05). B. breve colonization patterns were influenced by maternal allergic status, household pets and number of siblings.

    CONCLUSIONS: Temporal variations in Bifidobacterium colonization patterns early in life are associated with later development of eczema and/or atopic sensitization in infants at high risk of allergic disease. Modulation of the early microbiota may provide a means to prevent eczema in high-risk infants.

    Matched MeSH terms: Gastrointestinal Microbiome/immunology
  7. Jacky D, Bibi C, Meng LMC, Jason F, Gwendoline T, Jeremy L, et al.
    BMC Microbiol, 2023 Mar 30;23(1):88.
    PMID: 36997838 DOI: 10.1186/s12866-023-02822-z
    BACKGROUND: Plant-based diets offer more beneficial microbes and can modulate gut microbiomes to improve human health. We evaluated the effects of the plant-based OsomeFood Clean Label meal range ('AWE' diet), on the human gut microbiome.

    METHODS: Over 21 days, ten healthy participants consumed OsomeFood meals for five consecutive weekday lunches and dinners and resumed their regular diets for other days/meals. On follow-up days, participants completed questionnaires to record satiety, energy and health, and provided stool samples. To document microbiome variations and identify associations, species and functional pathway annotations were analyzed by shotgun sequencing. Shannon diversity and regular diet calorie intake subsets were also assessed.

    RESULTS: Overweight participants gained more species and functional pathway diversity than normal BMI participants. Nineteen disease-associated species were suppressed in moderate-responders without gaining diversity, and in strong-responders with diversity gains along with health-associated species. All participants reported improved short-chain fatty acids production, insulin and γ-aminobutyric acid signaling. Moreover, fullness correlated positively with Bacteroides eggerthii; energetic status with B. uniformis, B. longum, Phascolarctobacterium succinatutens, and Eubacterium eligens; healthy status with Faecalibacterium prausnitzii, Prevotella CAG 5226, Roseburia hominis, and Roseburia sp. CAG 182; and overall response with E. eligens and Corprococcus eutactus. Fiber consumption was negatively associated with pathogenic species.

    CONCLUSION: Although the AWE diet was consumed for only five days a week, all participants, especially overweight ones, experienced improved fullness, health status, energy and overall responses. The AWE diet benefits all individuals, especially those of higher BMI or low-fiber consumption.

    Matched MeSH terms: Gastrointestinal Microbiome*
  8. Jafari S, Meng GY, Rajion MA, Jahromi MF, Ebrahimi M
    J Agric Food Chem, 2016 Jun 08;64(22):4522-30.
    PMID: 27192629 DOI: 10.1021/acs.jafc.6b00846
    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.
    Matched MeSH terms: Gastrointestinal Microbiome/drug effects*
  9. Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, et al.
    Front Mol Biosci, 2020;7:624494.
    PMID: 33521059 DOI: 10.3389/fmolb.2020.624494
    Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.
    Matched MeSH terms: Gastrointestinal Microbiome
  10. Jayaraman A, Pettersson S
    Biochem Biophys Res Commun, 2022 Dec 10;633:88-91.
    PMID: 36344172 DOI: 10.1016/j.bbrc.2022.09.026
    The human gut microbiota comprises of trillions of micro-organisms in the gut some which secrete metabolites that play a pivotal role in supporting optimal body and organ functions. These dynamic and malleable gut microbes share a bidirectional relationship with their hosts that supports health in an age- and sex-dependent manner. Disruption of the gut microbiota or decrease in their diversity and richness due to unhealthy changes in lifestyle, diet or social disconnection, always results in unwanted outcomes on the host health which fuel chronic disease symptoms including neurodegenerative diseases. Thus, impairment of gut microbiota composition, results in organ decline that accelerates an individual's biological ageing. Here we review evidence supporting the bidirectional relationships between the gut microbiota and biological ageing.
    Matched MeSH terms: Gastrointestinal Microbiome*
  11. Jiang B, Sun J, Lv A, Hu X, Shi H, Sung Y, et al.
    FEMS Microbiol Lett, 2019 05 01;366(9).
    PMID: 31074797 DOI: 10.1093/femsle/fnz099
    Two DNA extraction methods, the Zirmil-beating cell disruption method (ZBC) and the QIAamp fast DNA stool mini kit (QIA), were used to extract DNA from the intestinal flora of the penaeid shrimp Litopenaeus vannamei, and their microbial communities were analyzed using 16S rDNA high-throughput sequencing. Results were obtained in terms of the number of reads, alpha diversity indexes, beta diversity indexes and taxonomic composition. The alpha diversity indexes of the community, according to the ZBC method, were higher than those according to the QIA method. Furthermore, results from the three samples using the ZBC method were less consistent than those where the QIA method was used. Further, using the latter method led to substantive clustering. It is suggested that the QIA method is more stable and repeatable than the ZBC method. Although the two extraction methods shared the major abundant microflora based on 16S rDNA high-throughput sequencing, bias associated with diversity analysis indexes and certain species was observed.
    Matched MeSH terms: Gastrointestinal Microbiome
  12. Johnson D, Letchumanan V, Thurairajasingam S, Lee LH
    Nutrients, 2020 Jul 03;12(7).
    PMID: 32635373 DOI: 10.3390/nu12071983
    The study of human microbiota and health has emerged as one of the ubiquitous research pursuits in recent decades which certainly warrants the attention of both researchers and clinicians. Many health conditions have been linked to the gut microbiota which is the largest reservoir of microbes in the human body. Autism spectrum disorder (ASD) is one of the neurodevelopmental disorders which has been extensively explored in relation to gut microbiome. The utilization of microbial knowledge promises a more integrative perspective in understanding this disorder, albeit being an emerging field in research. More interestingly, oral and vaginal microbiomes, indicating possible maternal influence, have equally drawn the attention of researchers to study their potential roles in the etiopathology of ASD. Therefore, this review attempts to integrate the knowledge of microbiome and its significance in relation to ASD including the hypothetical aetiology of ASD and its commonly associated comorbidities. The microbiota-based interventions including diet, prebiotics, probiotics, antibiotics, and faecal microbial transplant (FMT) have also been explored in relation to ASD. Of these, diet and probiotics are seemingly promising breakthrough interventions in the context of ASD for lesser known side effects, feasibility and easier administration, although more studies are needed to ascertain the actual clinical efficacy of these interventions. The existing knowledge and research gaps call for a more expanded and resolute research efforts in establishing the relationship between autism and microbiomes.
    Matched MeSH terms: Gastrointestinal Microbiome/physiology*
  13. Joseph N, Clayton JB, Hoops SL, Linhardt CA, Mohd Hashim A, Mohd Yusof BN, et al.
    Evol Bioinform Online, 2020;16:1176934320965943.
    PMID: 33281440 DOI: 10.1177/1176934320965943
    Childhood obesity is a serious public health problem worldwide. Perturbations in the gut microbiota composition have been associated with the development of obesity in both children and adults. Probiotics, on the other hand, are proven to restore the composition of the gut microbiome which helps reduce the development of obesity. However, data on the effect of probiotics on gut microbiota and its association with childhood obesity is limited. This study aims to determine the effect of probiotics supplement intervention on gut microbiota profiles in obese and normal-weight children. A total of 37 children, 17 normal weight, and 20 overweight school children from a government school in Selangor were selected to participate in this study. Participants were further divided into intervention and control groups. The intervention groups received daily probiotic drinks while the control groups continued eating their typical diet. Fecal samples were collected from the participants for DNA extraction. The hypervariable V3 and V4 regions of 16S rRNA gene were amplified and sequenced using the Illumina MiSeq platform. No significant differences in alpha diversity were observed between normal weight and obese children in terms of the Shannon Index for evenness or species richness. However, a higher intervention effect on alpha diversity was observed among normal-weight participants compared to obese. The participants' microbiome was found to fluctuate throughout the study. Analysis of the taxa at species level showed an increase in Bacteroides ovatus among the normal weight cohort. Genus-level comparison revealed a rise in genus Lachnospira and Ruminococcus in the overweight participants after intervention, compared to the normal-weight participants. The probiotics intervention causes an alteration in gut microbiota composition in both normal and overweight children. Though the association could not be defined statistically, this study has provided an improved understanding of the intervention effect of probiotics on gut microbiome dysbiosis in an underrepresented population.
    Matched MeSH terms: Gastrointestinal Microbiome
  14. K VK, Bhat RG, Rao BK, R AP
    Reprod Sci, 2023 Dec;30(12):3443-3455.
    PMID: 37418220 DOI: 10.1007/s43032-023-01289-7
    Uterine fibroid is a common gynecological disorder that affects women of reproductive age and has emerged as a major public health concern. The symptoms have a negative influence on both their physical health and quality of life. The cost of treatment has a significant impact on the disease's burden. Even though its origin is uncertain, estrogen is thought to be a key player in fibroid pathophysiology. Many theories, including those based on genetic and environmental factors, explain what causes hyper-estrogenic condition in fibroid patients. One such possibility that is currently being explored is the hypothesis that an altered gut microbiome can contribute to the development of diseases characterized by estrogen dominance. Gut dysbiosis is often a "hot area" in the health sciences. According to a recent study, uterine fibroid patients have altered gut microbiome. A variety of risk factors influence both fibroid development and gut homeostasis. Diet, lifestyle, physical activity, and environmental contaminants have an impact on estrogen and the gut flora. A better understanding of uterine fibroids' pathophysiology is required to develop effective preventative and treatment options. A few ways by which the gut microbiota contributes to UF include estrogen, impaired immune function, inflammation, and altered gut metabolites. Therefore, in the future, while treating fibroid patients, various strategies to deal with changes in the gut flora may be advantageous. For developing suggestions for clinical diagnosis and therapy, we reviewed the literature on the relationship between uterine fibroids and the gut microbiota.
    Matched MeSH terms: Gastrointestinal Microbiome*
  15. Karimi G, Jamaluddin R, Mohtarrudin N, Ahmad Z, Khazaai H, Parvaneh M
    Nutr Metab Cardiovasc Dis, 2017 Oct;27(10):910-918.
    PMID: 28821417 DOI: 10.1016/j.numecd.2017.06.020
    BACKGROUND AND AIM: Recent studies have reported beneficial effects of specific probiotics on obesity. However, the difference in the anti-obesity effects of probiotics as single species and dual species is still uncertain. Therefore, we aimed to compare the efficacy of single and dual species of bacteria on markers of obesity in high-fat diet-induced obese rats.

    METHODS AND RESULTS: A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups.

    CONCLUSIONS: B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species.

    Matched MeSH terms: Gastrointestinal Microbiome*
  16. Khan NA, Soopramanien M, Siddiqui R
    Curr Oncol, 2019 06;26(3):186.
    PMID: 31285664 DOI: 10.3747/co.26.4855
    Matched MeSH terms: Gastrointestinal Microbiome
  17. Khan NA, Soopramanien M, Maciver SK, Anuar TS, Sagathevan K, Siddiqui R
    Molecules, 2021 Aug 18;26(16).
    PMID: 34443585 DOI: 10.3390/molecules26164999
    Crocodiles are remarkable animals that have the ability to endure extremely harsh conditions and can survive up to a 100 years while being exposed to noxious agents that are detrimental to Homo sapiens. Besides their immunity, we postulate that the microbial gut flora of crocodiles may produce substances with protective effects. In this study, we isolated and characterized selected bacteria colonizing the gastrointestinal tract of Crocodylusporosus and demonstrated their inhibitory effects against three different cancerous cell lineages. Using liquid chromatography-mass spectrometry, several molecules were identified. For the first time, we report partial analyses of crocodile's gut bacterial molecules.
    Matched MeSH terms: Gastrointestinal Microbiome*
  18. Khine WWT, Zhang Y, Goie GJY, Wong MS, Liong M, Lee YY, et al.
    Sci Rep, 2019 05 24;9(1):7831.
    PMID: 31127186 DOI: 10.1038/s41598-019-44369-y
    Recent studies have realized the link between gut microbiota and human health and diseases. The question of diet, environment or gene is the determining factor for dominant microbiota and microbiota profile has not been fully resolved, for these comparative studies have been performed on populations of different ethnicities and in short-term intervention studies. Here, the Southern Chinese populations are compared, specifically the children of Guangzhou City (China), Penang City (west coast Malaysia) and Kelantan City (east coast Malaysia). These Chinese people have similar ancestry thus it would allow us to delineate the effect of diet and ethnicity on gut microbiota composition. For comparison, the Penang and Kelantan Malay children were also included. The results revealed that differences in microbiota genera within an ethnicity in different cities was due to differences in food type. Sharing the similar diet but different ethnicity in a city or different cities and living environment showed similar gut microbiota. The major gut microbiota (more than 1% total Operational Taxonomy Units, OTUs) of the children population are largely determined by diet but not ethnicity, environment, and lifestyle. Elucidating the link between diet and microbiota would facilitate the development of strategies to improve human health at a younger age.
    Matched MeSH terms: Gastrointestinal Microbiome/physiology*
  19. Kho ZY, Lal SK
    Front Microbiol, 2018;9:1835.
    PMID: 30154767 DOI: 10.3389/fmicb.2018.01835
    Interest toward the human microbiome, particularly gut microbiome has flourished in recent decades owing to the rapidly advancing sequence-based screening and humanized gnotobiotic model in interrogating the dynamic operations of commensal microbiota. Although this field is still at a very preliminary stage, whereby the functional properties of the complex gut microbiome remain less understood, several promising findings have been documented and exhibit great potential toward revolutionizing disease etiology and medical treatments. In this review, the interactions between gut microbiota and the host have been focused on, to provide an overview of the role of gut microbiota and their unique metabolites in conferring host protection against invading pathogen, regulation of diverse host physiological functions including metabolism, development and homeostasis of immunity and the nervous system. We elaborate on how gut microbial imbalance (dysbiosis) may lead to dysfunction of host machineries, thereby contributing to pathogenesis and/or progression toward a broad spectrum of diseases. Some of the most notable diseases namely Clostridium difficile infection (infectious disease), inflammatory bowel disease (intestinal immune-mediated disease), celiac disease (multisystemic autoimmune disorder), obesity (metabolic disease), colorectal cancer, and autism spectrum disorder (neuropsychiatric disorder) have been discussed and delineated along with recent findings. Novel therapies derived from microbiome studies such as fecal microbiota transplantation, probiotic and prebiotics to target associated diseases have been reviewed to introduce the idea of how certain disease symptoms can be ameliorated through dysbiosis correction, thus revealing a new scientific approach toward disease treatment. Toward the end of this review, several research gaps and limitations have been described along with suggested future studies to overcome the current research lacunae. Despite the ongoing debate on whether gut microbiome plays a role in the above-mentioned diseases, we have in this review, gathered evidence showing a potentially far more complex link beyond the unidirectional cause-and-effect relationship between them.
    Matched MeSH terms: Gastrointestinal Microbiome
  20. Khoo XH, Chong CW, Talha AM, Philip K, Teh CS, Isa AM, et al.
    J Gastroenterol Hepatol, 2023 Aug;38(8):1259-1268.
    PMID: 36908030 DOI: 10.1111/jgh.16174
    BACKGROUND AND AIM: The gut microbiota in irritable bowel syndrome (IBS) is known to vary with diet. We aim to (i) analyze the gut microbiota composition of IBS patients from a multi-ethnic population and (ii) explore the impact of a low FODMAP diet on gastrointestinal symptoms and gut microbiota composition among IBS patients.

    METHODS: A multi-center study of multi-ethnic Asian patients with IBS was conducted in two phases: (i) an initial cross-sectional gut microbiota composition study of IBS patients and healthy controls, followed by (ii) a single-arm 6-week dietary interventional study of the IBS patients alone, exploring clinical and gut microbiota changes.

    RESULTS: A total of 34 adult IBS patients (IBS sub-types of IBS-D 44.1%, IBS-C 32.4%, and IBS-M 23.5%) and 15 healthy controls were recruited. A greater abundance of Parabacteroides species with lower levels of bacterial fermenters and short-chain fatty acids producers were found among IBS patients compared with healthy controls. Age and ethnicity were found to be associated with gut microbiota composition. Following a low FODMAP dietary intervention, symptom and quality of life improvement were observed in 24 (70.6%) IBS patients. Symptom improvement was associated with adherence to the low FODMAP diet (46.7% poor adherence vs 92.9% good adherence, P = 0.014), and gut microbiota patterns, particularly with a greater abundance of Bifidobacterium longum, Anaerotignum propionicum, and Blautia species post-intervention.

    CONCLUSION: Gut microbiota variation in multi-ethnic IBS patients may be related to dietary intake and may be helpful to identify patients who are likely to respond to a low FODMAP diet.

    Matched MeSH terms: Gastrointestinal Microbiome*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links