Displaying publications 81 - 100 of 370 in total

Abstract:
Sort:
  1. Ng PK, Lin SM, Lim PE, Liu LC, Chen CM, Pai TW
    BMC Genomics, 2017 Jan 06;18(1):40.
    PMID: 28061748 DOI: 10.1186/s12864-016-3453-0
    BACKGROUND: The chloroplast genome of Gracilaria firma was sequenced in view of its role as an economically important marine crop with wide industrial applications. To date, there are only 15 chloroplast genomes published for the Florideophyceae. Apart from presenting the complete chloroplast genome of G. firma, this study also assessed the utility of genome-scale data to address the phylogenetic relationships within the subclass Rhodymeniophycidae. The synteny and genome structure of the chloroplast genomes across the taxa of Eurhodophytina was also examined.

    RESULTS: The chloroplast genome of Gracilaria firma maps as a circular molecule of 187,001 bp and contains 252 genes, which are distributed on both strands and consist of 35 RNA genes (3 rRNAs, 30 tRNAs, tmRNA and a ribonuclease P RNA component) and 217 protein-coding genes, including the unidentified open reading frames. The chloroplast genome of G. firma is by far the largest reported for Gracilariaceae, featuring a unique intergenic region of about 7000 bp with discontinuous vestiges of red algal plasmid DNA sequences interspersed between the nblA and cpeB genes. This chloroplast genome shows similar gene content and order to other Florideophycean taxa. Phylogenomic analyses based on the concatenated amino acid sequences of 146 protein-coding genes confirmed the monophyly of the classes Bangiophyceae and Florideophyceae with full nodal support. Relationships within the subclass Rhodymeniophycidae in Florideophyceae received moderate to strong nodal support, and the monotypic family of Gracilariales were resolved with maximum support.

    CONCLUSIONS: Chloroplast genomes hold substantial information that can be tapped for resolving the phylogenetic relationships of difficult regions in the Rhodymeniophycidae, which are perceived to have experienced rapid radiation and thus received low nodal support, as exemplified in this study. The present study shows that chloroplast genome of G. firma could serve as a key link to the full resolution of Gracilaria sensu lato complex and recognition of Hydropuntia as a genus distinct from Gracilaria sensu stricto.

    Matched MeSH terms: Genomics*
  2. Lim YL, Yong D, Ee R, Krishnan T, Tee KK, Yin WF, et al.
    J Biotechnol, 2015 Nov 20;214:43-4.
    PMID: 26376471 DOI: 10.1016/j.jbiotec.2015.09.005
    Here, we present the first complete genome sequence of Serratia fonticola DSM 4576(T), a potential plant growth promoting (PGP) bacterium which confers solubilization of inorganic phosphate, indole-3-acetic acid production, hydrogen cyanideproduction, siderophore production and assimilation of ammonia through the glutamate synthase (GS/GOGAT) pathway. This genome sequence is valuable for functional genomics and ecological studies which are related to PGP and biocontrol activities.
    Matched MeSH terms: Genomics
  3. Mat Isa N, Mohd Ayob J, Ravi S, Mustapha NA, Ashari KS, Bejo MH, et al.
    Virusdisease, 2019 Sep;30(3):426-432.
    PMID: 31803810 DOI: 10.1007/s13337-019-00530-9
    The main aim of our study was to explore the genome sequence of the inclusion body hepatitis associated Fowl adenovirus serotype 8b (FAdV-8b) UPM04217 and to study its genomic organisation. The nucleotide sequence of the whole genome of FAdV-8b UPM04217 was determined by using the 454 Pyrosequencing platform and the Sanger sequencing method. The complete genome was found to be 44,059 bp long with 57.9% G + C content and shared 97.5% genome identity with the reference FAdV-E genome (HG isolate). Interestingly, the genome analysis using ORF Finder, Glimmer3 and FGENESV predicted a total of 39 open reading frames (ORFs) compared to the FAdV-E HG that possessed 46 ORFs. Fourteen ORFs located within the central genomic region and 16 ORFs located within the left and right ends of the genome were assigned as being the high protein-coding regions. The fusion of the small ORFs at the right end terminal specifically in ORF22 and ORF33 could be the result of gene truncation in the FAdV-E HG. The frame shift mutation in ORF25 and other mutations in ORF13 and ORF17 might have lead to the emergence of genes that could have different functions. Besides, one of the minor capsid components, pVI, in FAdV-8b UPM04217 shared the highest similarity of 93% with that of FAdV-D, while only 47% similarity was found with FAdV-E. From the gene arrangement layout of the FAdV genome, FAdV-8b UPM04217 showed intermediate evolution between the FAdV-E HG and the FAdV-D although it was apparently more similar to the FAdV-E HG.
    Matched MeSH terms: Genomics
  4. Wang JH, Zhao KK, Zhu ZX, Wang HF
    Mitochondrial DNA B Resour, 2018 Oct 03;3(2):1145-1146.
    PMID: 33490565 DOI: 10.1080/23802359.2018.1522977
    Vatica mangachapoi is a tree up to 20 m tall with white resinous. It is distributed in China (Hainan province), Indonesia, Malaysia (N Borneo), Philippines, Thailand, and Vietnam. It grows in forests on hills and mountain slopes below 700 metres. Its durable wood is used for making boats and building bridges and houses. It has been ranked as a VU (Vulnerable) species in China. Here we report and characterize the complete plastid genome sequence of V. mangachapoi in an effort to provide genomic resources useful for promoting its conservation and phylogenetic research. The complete plastome is 151,538 bp in length and contains the typical structure and gene content of angiosperm plastome, including two Inverted Repeat (IR) regions of 23,921 bp, a Large Single-Copy (LSC) region of 83,587 bp and a Small Single-Copy (SSC) region of 20,109 bp. The plastome contains 114 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA gene, and 4 unique rRNA genes. The overall A/T content in the plastome of V. mangachapoi is 62.80%. The phylogenetic analysis indicated that V. mangachapoi and V. odorata is closely related and as an independent branch in Malvales in our study. The complete plastome sequence of V. mangachapoi will provide a useful resource for the conservation genetics of this species and for the phylogenetic studies for Vatica.
    Matched MeSH terms: Genomics
  5. Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW
    PeerJ, 2020;8:e9733.
    PMID: 32953261 DOI: 10.7717/peerj.9733
    Background: Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support.

    Methodology: The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium's response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion.

    Conclusion: This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.

    Matched MeSH terms: Genomics
  6. Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, et al.
    Nat Commun, 2019 04 16;10(1):1772.
    PMID: 30992440 DOI: 10.1038/s41467-019-09762-1
    Deep understanding of the genomic and immunological differences between Chinese and Western lung cancer patients is of great importance for target therapy selection and development for Chinese patients. Here we report an extensive molecular and immune profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating lymphocyte estimated using immune cell signatures is found to be significantly higher in adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%). The correlation of genomic alterations with immune signatures reveals that low immune infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway activation in SQCC. While KRAS mutations are found to be significantly associated with T cell infiltration in ADC samples. The SQCC patients with high antigen presentation machinery and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
    Matched MeSH terms: Genomics
  7. Sew YS, Aizat WM, Razak MSFA, Zainal-Abidin RA, Simoh S, Abu-Bakar N
    Data Brief, 2020 Aug;31:105927.
    PMID: 32642524 DOI: 10.1016/j.dib.2020.105927
    The proteome data of whole rice grain is considerably limited particularly for rice with pigmentations such as black and red rice. Hence, we performed proteome analysis of two black rice varieties (BALI and Pulut Hitam 9), two red rice varieties (MRM16 and MRQ100) and two white rice varieties (MR297 and MRQ76) using label-free liquid chromatography Triple TOF 6600 tandem mass spectrometry (LC-MS/MS). Our aim was to profile and identify proteins related to nutritional (i.e. antioxidant, folate and low glycaemic index) and quality (i.e. aromatic) traits based on peptide-centric scoring from the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) approach. Both information dependent acquisition (IDA) and SWATH-MS run were performed in this analysis. Raw data was then processed using ProteinPilot software to identify and compare proteins from the six different varieties. In future, this proteomics data will be integrated with previously obtained genomics [1] and transcriptomics [2] data focusing on the above nutritional and quality traits, with an ultimate aim to develop a panel of functional biomarkers related to those traits for future rice breeding programme. The raw MS data of the pigmented and non-pigmented rice varieties have been deposited to ProteomeXchange database with accession number PXD018338.
    Matched MeSH terms: Genomics
  8. Callari M, Batra AS, Batra RN, Sammut SJ, Greenwood W, Clifford H, et al.
    BMC Genomics, 2018 01 05;19(1):19.
    PMID: 29304755 DOI: 10.1186/s12864-017-4414-y
    BACKGROUND: Patient-Derived Tumour Xenografts (PDTXs) have emerged as the pre-clinical models that best represent clinical tumour diversity and intra-tumour heterogeneity. The molecular characterization of PDTXs using High-Throughput Sequencing (HTS) is essential; however, the presence of mouse stroma is challenging for HTS data analysis. Indeed, the high homology between the two genomes results in a proportion of mouse reads being mapped as human.

    RESULTS: In this study we generated Whole Exome Sequencing (WES), Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing (RNA-seq) data from samples with known mixtures of mouse and human DNA or RNA and from a cohort of human breast cancers and their derived PDTXs. We show that using an In silico Combined human-mouse Reference Genome (ICRG) for alignment discriminates between human and mouse reads with up to 99.9% accuracy and decreases the number of false positive somatic mutations caused by misalignment by >99.9%. We also derived a model to estimate the human DNA content in independent PDTX samples. For RNA-seq and RRBS data analysis, the use of the ICRG allows dissecting computationally the transcriptome and methylome of human tumour cells and mouse stroma. In a direct comparison with previously reported approaches, our method showed similar or higher accuracy while requiring significantly less computing time.

    CONCLUSIONS: The computational pipeline we describe here is a valuable tool for the molecular analysis of PDTXs as well as any other mixture of DNA or RNA species.

    Matched MeSH terms: Genomics/methods*
  9. Suresh Kumar, Meera Ramanujam
    MyJurnal
    Introduction: Vibrio cholerae is a motile, Gram-negative curved rod belonging to the Vibrionaceae family. It is the causative agent of cholera. The acute diarrheal disease cholera causes about 120 000 casualties annually and has a significant effect on the health of young kids between the ages of 1 and 5. The main cause of death is due to resistance to antibiotics. As a result, new drug targets need to be identified immediately. The study’s goal is to identify Vibrio Cholerae’s putative drug target through an integrated approach to genomics and proteomics. Methods: Through this study, 2241 core protein sequence of Vibrio Cholerae were retrieved from the Panx tool. The sequence decreased to 173 druggable sequences by undergoing different phases of the process such as determining the non-homolo- gous sequence against human proteome by using the BlastP tool, identifying the essential genes by using the DEG database, and determining the sequence of virulent proteins by using Virulent prediction tool. Results: 11 potential drug targets were identified through molecular weight, and sub-cellular localization analysis. Conclusion: Through pan-genome analysis, we can able to find potential drug targets. This study also helps to identify the potential drug targets against Vibrio cholerae and to increase the efforts of drug and vaccine developments.
    Matched MeSH terms: Genomics
  10. Shahidee Zainal Abidin, Han-Chung Lee, Sze-Zheng Fam, Syahril Abdullah, Norshariza Nordin, Pike-See Cheah, et al.
    MyJurnal
    Introduction: MiR-3099 was reported to play a role in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development. To further explore its potential regulatory effects on embryonic brain development, this study aims to construct and validate an expression vector of miR-3099 for future gain-of-function and loss-of-function studies. Methods: pCAG-eGFP vector was modified to include IRES2 and miR-3099 with 150bp upstream and downstream genomic sequences. The newly constructed vector, pCAG-miR-3099-IRES2-eGFP, consists of CAG promoter. The in vitro expression level of miR-3099 was measured using stem-loop RT-qPCR after it was transfected into 293FT cell. Later, the vector was electroporated into the embryonic brain at E15.5. Three days later, the E18.5 embryonic brain was harvested and cryopreserved. Immunohistochemistry was performed by using antibody against eGFP to validate the in utero expression of the transgene in the neocortex of the brain. Results: Our finding showed that, the expression level of miR-3099 was significantly upregulated (p
    Matched MeSH terms: Genomics
  11. Heydari H, Siow CC, Tan MF, Jakubovics NS, Wee WY, Mutha NV, et al.
    PLoS One, 2014;9(1):e86318.
    PMID: 24466021 DOI: 10.1371/journal.pone.0086318
    Corynebacteria are used for a wide variety of industrial purposes but some species are associated with human diseases. With increasing number of corynebacterial genomes having been sequenced, comparative analysis of these strains may provide better understanding of their biology, phylogeny, virulence and taxonomy that may lead to the discoveries of beneficial industrial strains or contribute to better management of diseases. To facilitate the ongoing research of corynebacteria, a specialized central repository and analysis platform for the corynebacterial research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. Here we present CoryneBase, a genomic database for Corynebacterium with diverse functionality for the analysis of genomes aimed to provide: (1) annotated genome sequences of Corynebacterium where 165,918 coding sequences and 4,180 RNAs can be found in 27 species; (2) access to comprehensive Corynebacterium data through the use of advanced web technologies for interactive web interfaces; and (3) advanced bioinformatic analysis tools consisting of standard BLAST for homology search, VFDB BLAST for sequence homology search against the Virulence Factor Database (VFDB), Pairwise Genome Comparison (PGC) tool for comparative genomic analysis, and a newly designed Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomic analysis. CoryneBase offers the access of a range of Corynebacterium genomic resources as well as analysis tools for comparative genomics and pathogenomics. It is publicly available at http://corynebacterium.um.edu.my/.
    Matched MeSH terms: Genomics/methods*
  12. Ikeda T, Ong EB, Watanabe N, Sakaguchi N, Maeda K, Koito A
    Sci Rep, 2016;6:19035.
    PMID: 26738439 DOI: 10.1038/srep19035
    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.
    Matched MeSH terms: Genomics
  13. Kannan TP, Zilfalil BA
    Malays J Med Sci, 2009 Apr;16(2):4-9.
    PMID: 22589651 MyJurnal
    Fifty years have elapsed since the discovery of the number of human chromosomes in 1956. Newer techniques have been developed since then, ranging from the initial conventional banding techniques to the currently used molecular array comparative genomic hybridisation. With a combination of these conventional and molecular techniques, cytogenetics has become an indispensable tool for the diagnosis of various genetic disorders, paving the way for possible treatment and management. This paper traces the history and evolution of cytogenetics leading up to the current state of technology.
    Matched MeSH terms: Genomics
  14. Asnet MJ, Rubia AG, Ramya G, Nagalakshmi RN, Shenbagarathai R
    J Vector Borne Dis, 2014 Jun;51(2):82-5.
    PMID: 24947213
    DENVirDB is a web portal that provides the sequence information and computationally curated information of dengue viral proteins. The advent of genomic technology has increased the sequences available in the public databases. In order to create relevant concise information on Dengue Virus (DENV), the genomic sequences were collected, analysed with the bioinformatics tools and presented as DENVirDB. It provides the comprehensive information of complete genome sequences of dengue virus isolates of Southeast Asia, viz. India, Bangladesh, Sri Lanka, East Timor, Philippines, Malaysia, Papua New Guinea, Brunei and China. DENVirDB also includes the structural and non-structural protein sequences of DENV. It intends to provide the integrated information on the physicochemical properties, topology, secondary structure, domain and structural properties for each protein sequences. It contains over 99 entries in complete genome sequences and 990 entries in protein sequences, respectively. Therefore, DENVirDB could serve as a user friendly database for researchers in acquiring sequences and proteomic information in one platform.
    Matched MeSH terms: Genomics/methods
  15. Sahilah, A.M., Audrey, L.Y.Y., Ong, S.L., Wan Sakeenah, W.N., Safiyyah, S., Norrakiah, A.S., et al.
    MyJurnal
    Forty three (n=43) genomic DNA of Escherichia coli (11 isolates from eggs and 32 isolates from imported beef meats) were characterized by shiga toxin 1 (stx1), enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and random amplified polymorphic DNA-PCR (RAPD-PCR) analyses. In the shiga toxin 1 (stx1) gene detection with primer stx 1F (5’-TTCTTCGGTATCCTATTCCC-3’) and stx 1R (5’- CTGTCACAGTAACAACCGT-3’), 9 E. coli of beef meats isolates were positive toward sxt1 gene. The results of the ERIC-PCR and RAPD-PCR were analyzed using GelCompar II software. ERIC-PCR with primer ERIC1 (5’-CACTTAGGGGTCCTCGAATGTA -3’) and ERIC2 (5’-AAGTAAGTGACTGGGGTGAGCG-3’) discriminated the E. coli into 6 clusters and 10 single isolates at 80% similarity. RAPD-PCR with primer Gen8 and Gen9, produced 10 clusters and 15 single isolates and 12 clusters and 14 single isolates of 80%, respectively. These results demonstrated that both ERIC-PCR and RAPD-PCR are useful and suitable tools for molecular typing of those isolates examined.
    Matched MeSH terms: Genomics
  16. Zainal-Abidin RA, Zainal Z, Mohamed-Hussein ZA, Sew YS, Simoh S, Ab Razak S, et al.
    Data Brief, 2020 Aug;31:105806.
    PMID: 32566707 DOI: 10.1016/j.dib.2020.105806
    The genomics and genetic data of pigmented and non-pigmented Malaysian rice varieties are still limited. Hence, we performed the genome resequencing of two black rice varieties (Bali, Pulut Hitam 9), two red rice varieties (MRM16, MRQ100) and two white rice varieties (MR297 and MRQ76) using Illumina HiSeq 4000 platform with 30x sequencing coverage. We aimed to identify and annotate single nucleotide polymorphisms (SNPs) from the genome of these four pigmented and two non-pigmented rice varieties. The potential SNPs will be used in developing the functional SNP markers related to nutritional (i.e. antioxidant, folate, amylose) and quality (i.e. aromatic) traits. Raw data of the pigmented and non-pigmented rice varieties have been deposited into the European Nucleotide Archive (ENA) database with accession number PRJEB29070 and PRJEB32344, respectively.
    Matched MeSH terms: Genomics
  17. Gan HM, Eng WWH, Dhanoa A
    Data Brief, 2019 Aug;25:104257.
    PMID: 31384648 DOI: 10.1016/j.dib.2019.104257
    We report the whole genome sequencing data and de novo genome assemblies for eight extended-spectrum beta-lactamases (ESBL) producing Enterobacteriaceae isolates from Malaysia consisting of four Klebsiella pneumoniae, two Enterobacter harmaechei, one Citrobacter freundii and one Escherichia coli. We identified at least one ESBL gene in each genome, with blaCTX-M-15 being the most prevalent ESBL gene in the current genomic sampling.
    Matched MeSH terms: Genomics
  18. Abdullah M, Suraiya S, Mohamad S, Harun A
    Data Brief, 2020 Aug;31:105949.
    PMID: 32671154 DOI: 10.1016/j.dib.2020.105949
    In this dataset, we report the genome assembly and data analysis of Mycobacterium tuberculosis strain SIT745/EAI1-MYS. Previously, this strain was isolated from a Malaysian patient with extra-pulmonary tuberculosis, and identification of this strain is done by spoligotype patterns with fifteen known Shared International Type (SITs). Further analysis showed that this strain has a remarkable phylogeographical specificity for Malaysia. Based on the National Center for Biotechnology Information (NCBI) nucleotide database information, the complete genome consists of 150 contigs with various sequence lengths and was not assembled. In this assembly, the aforementioned contigs along with reference sequence from Mycobacterium tuberculosis strain H37Rv and Mycobacterium bovis strain AF2122/97 was used for gap closures, were assembled into a single circular chromosome length of approximately 4.42 Mega bases (Mb) with an average GC content of 65.6%. The single circular chromosome was shown to contain 4,009 protein-coding sequences, 3 ribosomal RNAs, 45 transfer RNAs, and 12 superclasses distributed with 277 subsystems which constitute nearly 1900 genes, respectively. The genome information will provide fundamental knowledge of this organism as well as insight for understanding genomic and proteomic profiling, phylogenetic relationship.
    Matched MeSH terms: Genomics
  19. Teh KY, Afifudeen CLW, Aziz A, Wong LL, Loh SH, Cha TS
    Data Brief, 2019 Dec;27:104680.
    PMID: 31720332 DOI: 10.1016/j.dib.2019.104680
    Interest in harvesting potential benefits from microalgae renders it necessary to have the many ecological niches of a single species to be investigated. This dataset comprises de novo whole genome assembly of two mangrove-isolated microalgae (from division Chlorophyta); Chlorella vulgaris UMT-M1 and Messastrum gracile SE-MC4 from Universiti Malaysia Terengganu, Malaysia. Library runs were carried out with 2 × 150 base paired-ends reads, whereas sequencing was conducted using Illumina Novaseq 2500 platform. Sequencing yielded raw reads amounting to ∼11 Gb in total bases for both species and was further assembled de novo. Genome assembly resulted in a 50.15 Mbp and 60.83 Mbp genome size for UMT-M1 and SE-MC4, respectively. All filtered and assembled genomic data sequences have been submitted to National Centre for Biotechnology Information (NCBI) and can be located at DDBJ/ENA/GenBank under the accession of VJNP00000000 (UMT-M1) and VIYE00000000 (SE-MC4).
    Matched MeSH terms: Genomics
  20. Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, et al.
    PLoS One, 2016;11(6):e0157901.
    PMID: 27355363 DOI: 10.1371/journal.pone.0157901
    Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite.
    Matched MeSH terms: Genomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links