Displaying publications 81 - 100 of 337 in total

Abstract:
Sort:
  1. Mariappan V, Thimma J, Vellasamy KM, Shankar EM, Vadivelu J
    Environ Microbiol Rep, 2018 04;10(2):217-225.
    PMID: 29393577 DOI: 10.1111/1758-2229.12624
    Physiological constituents in airway surface liquids (ASL) appear to impact the adherence and invasion potentials of Burkholderia pseudomallei contributing to recrudescent melioidosis. Here, we investigated the factors present in ASL that is likely to influence bacterial adhesion and invasion leading to improved understanding of bacterial pathogenesis. Six B. pseudomallei clinical isolates from different origins were used to investigate the ability of the bacteria to adhere and invade A549 human lung epithelial cells using a system that mimics the physiological ASL with different pH, NaCl, KCl, CaCl2 and glucose concentrations. These parameters resulted in markedly differential adherence and invasion abilities of B. pseudomallei to the lung epithelial cells. The concentration of 20 mM glucose dramatically increased adherence and invasion by increasing the rate of pili formation in depiliated bacteria. Glucose significantly increased adherence and invasion of B. pseudomallei to A549 cells, and presence of NaCl, KCl and CaCl2 markedly ablated the effect despite the presence of glucose. Our data established a link between glucose, enhanced adhesion and invasion potentials of B. pseudomallei, hinting increased susceptibility of individuals with diabetes mellitus to clinical melioidosis.
    Matched MeSH terms: Glucose/metabolism*
  2. Wong YM, Wu TY, Ling TC, Show PL, Lee SY, Chang JS, et al.
    J Biosci Bioeng, 2018 May;125(5):590-598.
    PMID: 29352712 DOI: 10.1016/j.jbiosc.2017.12.012
    Three newly discovered H2 producing bacteria namely Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY originated from landfill leachate sludge have demonstrated highly efficient H2 production. The maximum H2 production attained from these isolates are in the descending order of strain C. perfringens strain JJC > C. bifermentans strain WYM > Clostridium sp. strain Ade.TY with yield of 4.68 ± 0.12, 3.29 ± 0.11, and 2.87 ± 0.10 mol H2/mol glucose, respectively. The result has broken the conventional theoretical yield of 4 mol H2/mol glucose. These isolates were thermodynamically favourable with Gibbs free energy between -33 and -35 kJ/mol (under process conditions: pH 6, 37 °C and 5 g/L glucose). All three isolates favour butyrate pathway for H2 production with the ratio of acetate and butyrate of 0.77, 0.65 and 0.80 for strain JJC, WYM and Ade.TY, respectively. This study reported provides a new insight on the potential of unique bacteria in H2 production.
    Matched MeSH terms: Glucose/metabolism
  3. Reidpath DD, Soyiri I, Jahan NK, Mohan D, Ahmad B, Ahmad MP, et al.
    Int J Public Health, 2018 Mar;63(2):193-202.
    PMID: 29372287 DOI: 10.1007/s00038-017-1072-4
    OBJECTIVES: The lack of population-based evidence on the risk factors for poor glycaemic control in diabetics, particularly in resource-poor settings, is a challenge for the prevention of long-term complications. This study aimed to identify the metabolic and demographic risk factors for poor glycaemic control among diabetics in a rural community in Malaysia.

    METHODS: A total of 1844 (780 males and 1064 females) known diabetics aged ≥ 35 years were identified from the South East Asia Community Observatory (SEACO) health and demographic surveillance site database.

    RESULTS: 41.3% of the sample had poor glycaemic control. Poor glycaemic control was associated with age and ethnicity, with older participants (65+) better controlled than younger adults (45-54), and Malaysian Indians most poorly controlled, followed by Malay and then Chinese participants. Metabolic risk factors were also highly associated with poor glycaemic control.

    CONCLUSIONS: There is a critical need for evidence for a better understanding of the mechanisms of the associations between risk factors and glycaemic control.

    Matched MeSH terms: Blood Glucose/metabolism*
  4. Lopez JB, Peng CL
    Clin Chim Acta, 2004 Feb;340(1-2):235-8.
    PMID: 14734218 DOI: 10.1016/j.cccn.2003.11.007
    Matched MeSH terms: Blood Glucose/metabolism
  5. Hasain Z, Raja Ali RA, Ahmad HF, Abdul Rauf UF, Oon SF, Mokhtar NM
    Nutrients, 2022 Sep 19;14(18).
    PMID: 36145254 DOI: 10.3390/nu14183878
    Probiotics are widely used as an adjuvant therapy in various diseases. Nonetheless, it is uncertain how they affect the gut microbiota composition and metabolic and inflammatory outcomes in women who have recently experienced gestational diabetes mellitus (post-GDM). A randomized, double-blind, placebo-controlled clinical trial involving 132 asymptomatic post-GDM women was conducted to close this gap (Clinical Trial Registration: NCT05273073). The intervention (probiotics) group received a cocktail of six probiotic strains from Bifidobacterium and Lactobacillus for 12 weeks, while the placebo group received an identical sachet devoid of living microorganisms. Anthropometric measurements, biochemical analyses, and 16S rRNA gene sequencing results were evaluated pre- and post-intervention. After the 12-week intervention, the probiotics group’s fasting blood glucose level significantly decreased (mean difference −0.20 mmol/L; p = 0.0021). The HbA1c, total cholesterol, triglycerides, and high-sensitivity C-reactive protein levels were significantly different between the two groups (p < 0.05). Sequencing data also demonstrated a large rise in the Bifidobacterium adolescentis following probiotic supplementation. Our findings suggest that multi-strain probiotics are beneficial for improved metabolic and inflammatory outcomes in post-GDM women by modulating gut dysbiosis. This study emphasizes the necessity for a comprehensive strategy for postpartum treatment that includes probiotics to protect post-GDM women from developing glucose intolerance.
    Matched MeSH terms: Blood Glucose/metabolism
  6. Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH
    Pharmacol Res, 2022 Jun;180:106237.
    PMID: 35487405 DOI: 10.1016/j.phrs.2022.106237
    The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
    Matched MeSH terms: Glucose/metabolism
  7. Kamarul Imran M, Ismail AA, Naing L, Wan Mohamad WB
    Singapore Med J, 2010 Feb;51(2):157-62.
    PMID: 20358156
    INTRODUCTION: This study aimed to compare the quality of life based on the Short Form-36 (SF-36) between two different groups of type 2 diabetes mellitus patients with glycaemic control: those with a glycosylated haemoglobin (HbA1c) level at or below 7.5 percent and those above 7.5 percent.
    METHODS: In this cross-sectional study, a generic SF-36 questionnaire was self-administered to patients with type 2 diabetes mellitus. Based on the HbA1c level, the mean SF-36 scale scores were compared. The analysis of covariance was used to obtain the adjusted mean scores of the SF-36 scales while controlling for age and duration of type 2 diabetes mellitus.
    RESULTS: 150 patients with type 2 diabetes mellitus were analysed. There were 63 (42 percent) women and 87 (58 percent) men, and their mean HbA1c level was 8.9 percent (SD 2.4 percent). When comparing the two groups of patients with different HbA1c levels, the adjusted means of four scales: physical health functioning, general health, social functioning and mental health, differed significantly between the two. The SF-36 scale scores in type 2 diabetes mellitus patients were also lower than those of the SF-36 norms for the Malaysian population.
    CONCLUSION: Type 2 diabetes mellitus patients with poor glycaemic control had lower mean SF-36 scores in physical functioning, general health, social functioning and mental health, and the SF-36 scores in these patients were also lower than the SF-36 norms of the Malaysian population.
    Matched MeSH terms: Blood Glucose/metabolism*
  8. Chen WN, Tang KS, Yeong KY
    Curr Neuropharmacol, 2022;20(8):1554-1563.
    PMID: 34951390 DOI: 10.2174/1570159X20666211223124715
    Alzheimer's disease (AD), the most common form of dementia, is pathologically characterized by the deposition of amyloid-β plaques and the formation of neurofibrillary tangles. In a neurodegenerative brain, glucose metabolism is also impaired and considered as one of the key features in AD patients. The impairment causes a reduction in glucose transporters and the uptake of glucose as well as alterations in the specific activity of glycolytic enzymes. Recently, it has been reported that α-amylase, a polysaccharide-degrading enzyme, is present in the human brain. The enzyme is known to be associated with various diseases such as type 2 diabetes mellitus and hyperamylasaemia. With this information at hand, we hypothesize that α-amylase could have a vital role in the demented brains of AD patients. This review aims to shed insight into the possible link between the expression levels of α-amylase and AD. Lastly, we also cover the diverse role of amylase inhibitors and how they could serve as a therapeutic agent to manage or stop AD progression.
    Matched MeSH terms: Glucose/metabolism
  9. Rosfarizan M, Ariff AB, Hassan MA, Karim MI
    Folia Microbiol (Praha), 1998;43(5):459-64.
    PMID: 9867479
    Direct conversion of gelatinized sago starch into kojic acid by Aspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of alpha-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5 g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.
    Matched MeSH terms: Glucose/metabolism
  10. Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ, Yusoff AR, Salim MR, et al.
    Folia Microbiol (Praha), 2013 Sep;58(5):385-91.
    PMID: 23307571 DOI: 10.1007/s12223-013-0221-2
    Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5-30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography-mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.
    Matched MeSH terms: Glucose/metabolism
  11. Mohammadi S, Asbaghi O, Dolatshahi S, Omran HS, Amirani N, Koozehkanani FJ, et al.
    Nutr J, 2023 Oct 06;22(1):49.
    PMID: 37798798 DOI: 10.1186/s12937-023-00878-1
    BACKGROUND: It is suggested that supplementation with milk protein (MP) has the potential to ameliorate the glycemic profile; however, the exact impact and certainty of the findings have yet to be evaluated. This systematic review and dose-response meta-analysis of randomized controlled trials (RCTs) assessed the impact of MP supplementation on the glycemic parameters in adults.

    METHODS: A systematic search was carried out among online databases to determine eligible RCTs published up to November 2022. A random-effects model was performed for the meta-analysis.

    RESULTS: A total of 36 RCTs with 1851 participants were included in the pooled analysis. It was displayed that supplementation with MP effectively reduced levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -1.83 mg/dL, 95% CI: -3.28, -0.38; P = 0.013), fasting insulin (WMD: -1.06 uU/mL, 95% CI: -1.76, -0.36; P = 0.003), and homeostasis model assessment of insulin resistance (HOMA-IR) (WMD: -0.27, 95% CI: -0.40, -0.14; P  8 weeks) with high or moderate doses (≥ 60 or 30-60 g/d) of MP or whey protein (WP). Serum FBG levels were considerably reduced upon short-term administration of a low daily dose of WP (

    Matched MeSH terms: Blood Glucose/metabolism
  12. Ajiboye BO, Dada S, Fatoba HO, Lawal OE, Oyeniran OH, Adetuyi OY, et al.
    Biomed Pharmacother, 2023 Dec;168:115681.
    PMID: 37837880 DOI: 10.1016/j.biopha.2023.115681
    This experiment was conducted to evaluate the Dalbergiella welwitschia alkaloid-rich extracts on liver damage in streptozotocin-induced diabetic rats. Hence, to induce diabetes, 45 mg/kg body weight of streptozotocin was intraperitoneally injected into the Wistar rats. Subsequently, 5 % (w/v) of glucose water was given to the induced animals for 24 h. Thus, the animals (48) were grouped into five groups (n = 8), containing normal control (NC), diabetic control (DC), diabetic rats placed on low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e. DWL and DWH respectively), and diabetic rats administered 200 mg/kg body weight of metformin (MET). The animals were sacrificed on the 21st day of the experiment, blood and liver were harvested, and different liver damage biomarkers were evaluated. The results obtained demonstrated that diabetic rats administered DWL, DWH and MET significantly (p  0.05) different when compared with NC. Also, diabetic rats administered DWL, DWH and MET revealed a significant (p  0.05) different when compared with NC. In addition, histological examination revealed that diabetic rats placed on DWL, DWH and MET normalized the hepatocytes. Consequently, it can be inferred that alkaloid-rich extracts from D. welwitschi leaf could be helpful in improving liver damage associated with diabetes mellitus rats.
    Matched MeSH terms: Blood Glucose/metabolism
  13. Subramaniam S, Ong KC, Sabaratnam V, Chua KH, Kuppusamy UR
    Int J Med Mushrooms, 2023;25(4):27-42.
    PMID: 37075082 DOI: 10.1615/IntJMedMushrooms.2023047595
    Ganoderma neo-japonicum Imazeki is a medicinal mushroom consumed by the indigenous people in Malaysia as a remedy for diabetes. This study aims to validate the efficacy of G. neo-japonicum polysaccharides (GNJP) on obesity-induced type 2 diabetes mellitus (T2DM) in C57BL/6J mice. Mice were divided into seven groups; normal diet (ND)-control, high-fat-diet (HFD)-control, HFDGNJP-treated (50, 100, 200 mg/kg b.w.), HFDMET (metformin 50 mg/kg; positive-control) and ND-GNJP (200 mg/kg b.w.). Mice were administered GNJP or metformin orally for 10 weeks (thrice/week) and sacrificed after an oral glucose tolerance test. Body weight, serum biochemicals, liver histology, adipocyte gene expressions, glucose and insulin levels were measured. HFD caused obesity, dyslipidemia, and diabetes in the untreated groups. GNJP (50 mg/kg b.w.) supplementation prevented weight gain and liver steatosis, improved serum lipid profile and glucose tolerance and attenuated hyperglycemia and hyperinsulinemia more effectively when compared with the other treatment groups. The prevention of obesity and lipid dysregulation is plausibly attributed to the increased hormone-sensitive lipase and reduced Akt-1 and Ppary gene expressions while the up-regulation of AdipoQ (adiponectin), Prkag2 and Slc2a4 genes served to sensitize insulin and improve glucose uptake. Thus, supplementation with an appropriate dose of GNJP has promising efficacies in preventing HFD aka obesity-induced T2DM and associated metabolic abnormalities.
    Matched MeSH terms: Blood Glucose/metabolism
  14. Poh Shean W, Chin Voon T, Long Bidin MBB, Adam NLB
    J R Coll Physicians Edinb, 2023 Jun;53(2):94-103.
    PMID: 37154572 DOI: 10.1177/14782715231170958
    BACKGROUND: The prevalence of overweight and obesity in type 1 diabetes mellitus (T1DM) individuals is increasing. Overweight people with T1DM may be insulin resistant. Glycaemic variability (GV) is an emerging measure of glycaemic control. The aim of this study is to investigate whether metformin, in adjunct to insulin, would have any favourable effect on GV.

    METHODS: This was a multi-centre, open-label randomised crossover study. Twenty-four overweight/obese T1DM patients aged ⩾18 years old with HbA1c ⩾ 7.0% (53 mmol/mol) were recruited and randomised into two study arms. For first 6-week, one arm remained on standard of care (SOC), the other arm received metformin, adjunctive to SOC. After 2-week washout, patients crossed over and continued for another 6 weeks. Glycaemic variability, other glycaemic parameters and metabolic profile were monitored.

    RESULTS: There were significant reduction in metformin group for GV: mean (0.18 ± 1.73 vs -0.95 ± 1.24, p = 0.014), %CV (-15.84 (18.92) vs -19.08 (24.53), p = 0.044), glycemic risk assessment of diabetes equation (-0.69 (3.83) vs -1.61 (3.61), p = 0.047), continuous overlapping net glycaemic action (0.25 ± 1.62 vs -0.85 ± 1.22, p = 0.013), J-index (-0.75 (21.91) vs -7.11 (13.86), p = 0.034), time in range (1.13 ± 14.12% vs 10.83 ± 15.47%, p = 0.032); changes of systolic blood pressure (2.78 ± 11.19 mmHg vs -4.30 ± 9.81 mmHg, p = 0.027) and total daily dose (TDD) insulin (0.0 (3.33) units vs -2.17 (11.45) units, p = 0.012). Hypoglycaemic episodes were not significant in between groups.

    CONCLUSION: Metformin showed favourable effect on GV in overweight/obese T1DM patients and reduction in systolic blood pressure, TDD insulin, fasting venous glucose and fructosamine.

    Matched MeSH terms: Blood Glucose/metabolism
  15. Alshiyab H, Kalil MS, Hamid AA, Wan Yusoff WM
    Pak J Biol Sci, 2008 Sep 15;11(18):2193-200.
    PMID: 19137827
    The objective of this study is to investigate the effect of salts addition to fermentation medium on hydrogen production, under anaerobic batch culture system. In this study, batch experiments were conducted to investigate the inhibitory effect of both NaCl and sodium acetate on hydrogen production. The optimum pH and temperature for hydrogen production were at initial pH of 7.0 and 30 degrees C. Enhanced production of hydrogen, using glucose as substrate was achieved. In the absence of Sodium Chloride and Sodium Acetate enhanced hydrogen yield (Y(P/S)) from 350 mL g(-1) glucose utilized to 391 mL g(-1) glucose utilized with maximum hydrogen productivity of 77.5 ml/L/h. Results also show that sodium chloride and sodium acetate in the medium adversely affect growth. Hydrogen yield per biomass (Y(P/X)) of 254 ml/L/g, biomass per substrate utilized (Y(X/S)) of 0.268 and (Y(H2/S) of 0.0349. The results suggested that Sodium at any concentration resulted to inhibit the bacterial productivity of hydrogen.
    Matched MeSH terms: Glucose/metabolism
  16. Alalayah WM, Kalil MS, Kadhum AA, Jahim JM, Jaapar SZ, Alauj NM
    Pak J Biol Sci, 2009 Nov 15;12(22):1462-7.
    PMID: 20180320
    A two-stage fermentation process consisting of dark and photo-fermentation periods was carried out in a batch reactor. In the first stage, glucose was fermented in the dark stage using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564; CSN1-4) to produce acetate, CO2 and H2. The acetate produced in the first stage is fermented to H2 and CO2 by Rhodobacter sphaeroides NCIMB 8253 for further hydrogen production in the second, illuminated stage. The yield of hydrogen in the first stage was about 3.10 mol H2 (mol glucose)(-1) at a glucose concentration of 10 g L(-1), pH 6 +/- 0.2 and 37 degrees C and the second stage yield was about 1.10-1.25 mol H2 (mol acetic acid)(-1) at pH 6.8 +/- 0.2 and 32 degrees C, without removal of the Clostridium CSN1-4. The overall yield of hydrogen in the two-stage process, with glucose as the main substrate was higher than single-stage fermentation.
    Matched MeSH terms: Glucose/metabolism
  17. Lim SH, Ibrahim D
    Pak J Biol Sci, 2013 Sep 15;16(18):920-6.
    PMID: 24502148
    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol.
    Matched MeSH terms: Glucose/metabolism
  18. Fettach S, Thari FZ, Karrouchi K, Benbacer L, Lee LH, Bouyahya A, et al.
    Chem Biol Interact, 2024 Mar 01;391:110902.
    PMID: 38367680 DOI: 10.1016/j.cbi.2024.110902
    Type 2 diabetes mellitus (T2DM) is a chronic endocrine/metabolic disorder characterized by elevated postprandial and fasting glycemic levels that result in disturbances in primary metabolism. In this study, we evaluated the metabolic effects of thiazolidine-2,4-dione derivatives in Wistar rats and Swiss mice that were fed a high-fat diet (HFD) for 4 weeks and received 90 mg/kg of streptozotocin (STZ) intraperitoneally as a T2DM model. The HFD consisted of 17% carbohydrate, 58% fat, and 25% protein, as a percentage of total kcal. The thiazolidine-2,4-dione derivatives treatments reduced fasting blood glucose (FBG) levels by an average of 23.98%-50.84%, which were also improved during the oral starch tolerance test (OSTT). Treatment with thiazolidine-2,4-dione derivatives also improved triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and total cholesterol levels (P 
    Matched MeSH terms: Blood Glucose/metabolism
  19. Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, et al.
    Sci Rep, 2024 Feb 15;14(1):3823.
    PMID: 38360784 DOI: 10.1038/s41598-023-45608-z
    Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
    Matched MeSH terms: Blood Glucose/metabolism
  20. Ahmad H, Singh R, Ghosh AK
    Indian J Med Res, 2009 Aug;130(2):160-5.
    PMID: 19797813
    Sago (Metroxylin sagu) is one of the main sources of native starch. In Malaysia sago dishes are commonly eaten with sugar. However, other societies use sago as a staple food item instead of rice or potato. The study was undertaken to investigate the effect of ingestion of different physical forms of sago supplementation on plasma glucose and plasma insulin responses, as compared to the white bread supplementation in man, during resting condition.
    Matched MeSH terms: Blood Glucose/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links