Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.
In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB.
The aim of the present work was to investigate the feasibility of grass waste (GW) for methylene blue (MB) adsorption. The adsorption of MB on GW material was studied as a function of GW dose (0.05-1.20 g), solution pH 3-10, contact time and initial concentration (70-380 mg/L). The influence of these parameters on the adsorption capacity was studied using the batch process. The experimental data were analyzed by the Langmuir and Freundlich isotherms. The adsorption isotherm was found to follow the Langmuir model. The monolayer adsorption capacity was found to be 457.640 mg/g. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order models, and were found to follow closely the pseudo-second-order kinetic model. The results revealed that GW adsorbent is potentially low-cost adsorbent for adsorption of MB.
Isosulfan blue is not available for clinical use in Malaysia. This study describes the use of methylene blue as an alternative to isosulfan blue in colorectal sentinel node mapping.
In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.
This study aimed at investigating the feasibility of using jackfruit peel (JFP), a solid waste, abundantly available in Malaysia, for the adsorption of methylene blue, a cationic dye. Batch adsorption studies were conducted to evaluate the effects of contact time, initial concentration (35-400mg/L), pH (2-11), and adsorbent dose (0.05-1.20g) on the removal of dye at temperature of 30 degrees C. The experimental data were analyzed by the four different types of linearized Langmuir isotherm, the Freundlich isotherm and the Temkin isotherm. The experimental data fitted well with the type 2 Langmuir model with a maximum adsorption capacity of 285.713mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-second-order kinetics was the best for the adsorption of MB by JFP with coefficients of correlation R(2)> or =0.9967 for all initial MB concentrations studied. The results demonstrated that the JFP is very effective for the adsorption of methylene blue (MB) from aqueous solutions.
To report a case of methylene blue related endophthalmitis. Observational case report. Review of clinical record, photographs. A 60 year old man developed endophthalmitis after methylene blue was accidentally used to stain the anterior capsule during phacoemulsification of cataract. His left visual acuity deteriorated from 6/12 to 6/36 two weeks after the operation. Despite intensive treatment with topical and intravitreal antibiotics, his condition deteriorated. A vitrectomy and silicone oil injection eventually managed to control the progression of the disease and salvage the eye. However the visual outcome remained poor due to corneal decompensation and retinal ischemia. Both vitreous tap and vitreous biopsy were negative for any organism. Methylene blue is extremely toxic to ocular structures and should not be used intraocularly.
The potential of garlic peel (GP), agricultural waste, to remove methylene blue (MB) from aqueous solution was evaluated in a batch process. Experiments were carried out as function of contact time, initial concentration (25-200mg/L), pH (4-12) and temperature (303, 313 and 323 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The data fitted well with the Freundlich isotherm. The maximum monolayer adsorption capacities were found to be 82.64, 123.45, and 142.86 mg/g at 303, 313, and 323 K, respectively. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the garlic peel could be an alternative for more costly adsorbents used for dye removal.
Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.
In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.
ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10-3 min-1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution.
TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
Recently noted that the methylene blue cause severe central nervous system toxicity. It is essential to optimize the methylene blue from aqueous environment. In this study, a comparison of an optimization of methylene blue was investigated by using modified Ca(2+) and Zn(2+) bio-polymer hydrogel beads. A batch mode study was conducted using various parameters like time, dye concentration, bio-polymer dose, pH and process temperature. The isotherms, kinetics, diffusion and thermodynamic studies were performed for feasibility of the optimization process. Freundlich and Langmuir isotherm equations were used for the prediction of isotherm parameters and correlated with dimensionless separation factor (RL). Pseudo-first order and pseudo-second order Lagegren's kinetic equations were used for the correlation of kinetic parameters. Intraparticle diffusion model was employed for diffusion of the optimization process. The Fourier Transform Infrared Spectroscopy (FTIR) shows different absorbent peaks of Ca(2+) and Zn(2+) beads and the morphology of the bio-polymer material analyzed with Scanning Electron Microscope (SEM). The TG & DTA studies show that good thermal stability with less humidity without production of any non-degraded products.
Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of carrageenan is based on the concept of competitive binding of positively charged MB to the negatively charged dsDNA and carrageenan. The decrement in the MB cathodic peak current (ipc) signal as a result of the released MB from the immobilized dsDNA, and attracted to the carrageenan can be monitored via differential pulse voltammetry (DPV). The biosensor showed high sensitivity and selectivity to carrageenan at low concentration without interference from other polyanions such as alginate, gum arabic and starch. Calibration of the biosensor with carrageenan exhibited an excellent linear dependence from 1-10 mg L-1 (R2 = 0.98) with a detection limit of 0.08 mg L-1. The DNA-based carrageenan biosensor showed satisfactory reproducibility with 5.6-6.9% (n = 3) relative standard deviations (RSD), and possessing several advantages such as simplicity, fast and direct application to real sample analysis without any prior extensive sample treatments, particularly for seaweeds and food analyses.
This research aims to compare the ability of smart hydrogel in removing the methylene blue prepared by using two different radiation methods. The extracted pectin from the dragon fruit peel (Hylocereus polyrhizus) was used with acrylic acid (AA) to produce a polymerized hydrogel through gamma and microwave radiation. The optimum hydrogel swelling capacity was obtained by varying the dose of radiation, pectin to AA ratio and pH used. From the array of samples, the ideal hydrogel was obtained at pH 8 with a ratio of 2:3 (pectin: AA) using 10 kGy and 400 W radiated gamma and microwave respectively. The performance of both hydrogels namely as Pc/AA(G) (gamma) and Pc/AA(Mw) (microwave) were investigated using methylene blue (MB) adsorption studies. In this study, three variables were manipulated, pH and MB concentration and hydrogel mass in order to find the optimum condition for the adsorption. Results showed that 20 mg of Pc/AA(G) performed the highest MB removal which was about 45% of 20 mg/L MB at pH 8. While 30 mg of Pc/AA(Mw) able to remove up to 35% of 20 mg/L MB at the same pH condition. To describe the adsorption mechanism, both kinetic models pseudo-first-order, pseudo-second-order were employed. The results from kinetic data showed that it fitted the pseudo-first-order as compared to pseudo-second-order model equation. This study provides alternative of green, facile and affective biomaterial for dye absorbents that readily available.
Palm oil mill wastes (palm kernel shell (PKS)) were used to prepare activated carbons, which were tested in the removal of colorants from water. The adsorbents were prepared by 1-h impregnation of PKS with ZnCl2 as the activating agent (PKS:ZnCl2 mass ratios of 1:1 and 2:1), followed by carbonization in autogenous atmosphere at 500 and 550 °C during 1 h. The characterization of the activated carbons included textural properties (porosity), surface chemistry (functional groups), and surface morphology. The dye removal performance of the different activated carbons was investigated by means of the uptake of methylene blue (MB) in solutions with various initial concentrations (25-400 mg/L of MB) at 30 °C, using a 0.05-g carbon/50-mL solution relationship. The sample prepared with 1:1 PKS:ZnCl2 and carbonized at 550 °C showed the highest MB adsorption capacity (maximum uptake at the equilibrium, q max = 225.3 mg MB / g adsorbent), resulting from its elevated specific surface area (BET, 1058 m2/g) and microporosity (micropore surface area, 721 m2/g). The kinetic experiments showed that removals over 90% of the equilibrium adsorptions were achieved after 4-h contact time in all the cases. The study showed that palm oil mill waste biomass could be used in the preparation of adsorbents efficient in the removal of colorants in wastewaters.
This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
Silver nanoparticles (AgNPs) were prepared by reacting Kyllinga brevifolia extract (KBE) with AgNO3 aqueous solution at room temperature (22 ± 3 °C). The phytochemical constituents in KBE responsible for the reduction process were identified as carbohydrate, protein, and plant sterols (stigmasterol and campesterol). KBE was also found to function as a capping agent for stabilization of AgNPs. The AgNPs were stable at room temperature and had a quasi-spherical shape with an average particle size 22.3 nm. The use of KBE offers not only eco-friendly and non-pathogenic path for AgNPs formation, it also induced rapid formation of the AgNPs. Methylene blue (MB) removal was then done on the AgNPs in the presence of either KBE or NaBH4. Ninety-three percent removal of MB was achieved with a rate of reaction 0.2663 min-1 in the solution with KBE+AgNPs (pH 2). However, in NaBH4+AgNPs system, 100% MB removal was achieved at pH 8-10. The reaction rate was 2.5715 min-1 indicating a fast removal rate of MB dye. The process of reduction occurs via electron relay effect whereas in KBE+AgNPs system, sedimentation occurred along with the reduction process. Nevertheless, the use of KBE+AgNPs system is preferred as the reducing agent is more benign to the environment.
Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.