Displaying publications 81 - 100 of 355 in total

Abstract:
Sort:
  1. Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR
    Biomater Sci, 2018 Dec 18;7(1):31-50.
    PMID: 30374499 DOI: 10.1039/c8bm01041b
    Immediate control of uncontrolled bleeding and infection are essential for saving lives in both combat and civilian arenas. Inorganic well-ordered mesoporous silica and bioactive glasses have recently shown great promise for accelerating hemostasis and infection control. However, to date, there has been no comprehensive report assessing their specific mechanism of action in accelerating the hemostasis process and exerting an antibacterial effect. After providing a brief overview of the hemostasis process, this review presents a critical overview of the recently developed inorganic mesoporous silica and bioactive glass-based materials proposed for hemostatic clinical applications and specifically investigates their unique characteristics that render them applicable for hemostatic applications and preventing infections. This article also identifies promising new research directions that should be undertaken to ascertain the effectiveness of these materials for hemostatic applications.
    Matched MeSH terms: Models, Molecular
  2. Antonova SV, Haffke M, Corradini E, Mikuciunas M, Low TY, Signor L, et al.
    Nat Struct Mol Biol, 2018 12;25(12):1119-1127.
    PMID: 30510221 DOI: 10.1038/s41594-018-0156-z
    TFIID is a cornerstone of eukaryotic gene regulation. Distinct TFIID complexes with unique subunit compositions exist and several TFIID subunits are shared with other complexes, thereby conveying precise cellular control of subunit allocation and functional assembly of this essential transcription factor. However, the molecular mechanisms that underlie the regulation of TFIID remain poorly understood. Here we use quantitative proteomics to examine TFIID submodules and assembly mechanisms in human cells. Structural and mutational analysis of the cytoplasmic TAF5-TAF6-TAF9 submodule identified novel interactions that are crucial for TFIID integrity and for allocation of TAF9 to TFIID or the Spt-Ada-Gcn5 acetyltransferase (SAGA) co-activator complex. We discover a key checkpoint function for the chaperonin CCT, which specifically associates with nascent TAF5 for subsequent handover to TAF6-TAF9 and ultimate holo-TFIID formation. Our findings illustrate at the molecular level how multisubunit complexes are generated within the cell via mechanisms that involve checkpoint decisions facilitated by a chaperone.
    Matched MeSH terms: Models, Molecular*
  3. Ramli ANM, Manas NHA, Hamid AAA, Hamid HA, Illias RM
    Food Chem, 2018 Nov 15;266:183-191.
    PMID: 30381175 DOI: 10.1016/j.foodchem.2018.05.125
    Cysteine proteases in pineapple (Ananas comosus) plants are phytotherapeutical agents that demonstrate anti-edematous, anti-inflammatory, anti-thrombotic and fibrinolytic activities. Bromelain has been identified as an active component and as a major protease of A. comosus. Bromelain has gained wide acceptance and compliance as a phytotherapeutical drug. The proteolytic fraction of pineapple stem is termed stem bromelain, while the one presents in the fruit is known as fruit bromelain. The amino acid sequence and domain analysis of the fruit and stem bromelains demonstrated several differences and similarities of these cysteine protease family members. In addition, analysis of the modelled fruit (BAA21848) and stem (CAA08861) bromelains revealed the presence of unique properties of the predicted structures. Sequence analysis and structural prediction of stem and fruit bromelains of A. comosus along with the comparison of both structures provides a new insight on their distinct properties for industrial application.
    Matched MeSH terms: Models, Molecular*
  4. Sakkhachornphop S, Hadpech S, Wisitponchai T, Panto C, Kantamala D, Utaipat U, et al.
    Viruses, 2018 11 13;10(11).
    PMID: 30428529 DOI: 10.3390/v10110625
    Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001⁻2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future.
    Matched MeSH terms: Models, Molecular
  5. Teh AH, Chiam NC, Furusawa G, Sudesh K
    Int J Biol Macromol, 2018 Nov;119:438-445.
    PMID: 30048726 DOI: 10.1016/j.ijbiomac.2018.07.147
    Polyhydroxyalkanoate (PHA) synthase, PhaC, is a key enzyme in the biosynthesis of PHA, a type of bioplastics with huge potential to replace petroleum-based plastics. While two structures have been determined, the exact mechanism remains unclear partly due to the absence of a tunnel for product passage. A model of the class I PhaC from Aquitalea sp. USM4, characterised with Km of 394 μM and kcat of 476 s-1 on 3-(R)-hydroxybutyryl-CoA, revealed a three-branched channel at the dimeric interface. Two of them are opened to the solvent and are expected to serve as the putative routes for substrate entrance and product exit, while the third is elongated in the class II PhaC1 model from Pseudomonas aeruginosa, indicating a role in accommodating the hydroxyalkanoate (HA) moiety of a HA-CoA substrate. Docking of the two tetrahedral intermediates, formed during the transfer of the growing PHA chain from the catalytic Cys to a new molecule of substrate and back to Cys, suggests a common elongation mechanism requiring the HA moiety of the ligand to rotate ~180°. Substrate specificity is determined in part by a bulky Phe/Tyr/Trp residue in the third branch in class I, which is conserved as Ala in class II to create room for longer substrates.
    Matched MeSH terms: Models, Molecular*
  6. Mazlan SNHS, Ali MSM, Rahman RNZRA, Sabri S, Jonet MA, Leow TC
    Int J Biol Macromol, 2018 Nov;119:1188-1194.
    PMID: 30102982 DOI: 10.1016/j.ijbiomac.2018.08.022
    GDSL esterase J15 (EstJ15) is a member of Family II of lipolytic enzyme. The enzyme was further classified in subgroup SGNH hydrolase due to the presence of highly conserve motif, Ser-Gly-Asn-His in four conserved blocks I, II, III, and V, respectively. X-ray quality crystal of EstJ15 was obtained from optimized formulation containing 0.10 M ammonium sulphate, 0.15 M sodium cacodylate trihydrate pH 6.5, and 20% PEG 8000. The crystal structure of EstJ15 was solved at 1.38 Å with one molecule per asymmetric unit. The structure exhibits α/β hydrolase fold and shared low amino acid sequence identity of 23% with the passenger domain of the autotransporter EstA of Pseudomonas aeruginosa. The active site is located at the centre of the structure, formed a narrow tunnel that hinder long substrates to be catalysed which was proven by the protein-ligand docking analysis. This study facilitates the understanding of high substrate specificity of EstJ15 and provide insights on its catalytic mechanism.
    Matched MeSH terms: Models, Molecular
  7. Tabandeh M, Goh EW, Salman AA, Heidelberg T, Duali Hussen RS
    Carbohydr Res, 2018 Nov;469:14-22.
    PMID: 30196011 DOI: 10.1016/j.carres.2018.08.016
    Two azide-terminated oligoethylene oxide spacered glycolipids have been synthesized, and their assembly behavior has been studied in comparison to the corresponding base surfactants. The results suggest potential of the Guerbet lactoside-based compound for targeted drug delivery, while a coiling of the ethylene oxide linker disfavors the application of the glucoside.
    Matched MeSH terms: Models, Molecular
  8. Onoja E, Chandren S, Razak FIA, Wahab RA
    J Biotechnol, 2018 Oct 10;283:81-96.
    PMID: 30063951 DOI: 10.1016/j.jbiotec.2018.07.036
    The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2-MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2-MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.
    Matched MeSH terms: Models, Molecular
  9. Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, et al.
    PLoS Biol, 2018 Oct;16(10):e3000038.
    PMID: 30346944 DOI: 10.1371/journal.pbio.3000038
    Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
    Matched MeSH terms: Models, Molecular
  10. Oyeleye A, Normi YM
    Biosci Rep, 2018 Sep 03;38(4).
    PMID: 30042170 DOI: 10.1042/BSR20180323
    Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
    Matched MeSH terms: Models, Molecular
  11. Tajudeen Bale A, Mohammed Khan K, Salar U, Chigurupati S, Fasina T, Ali F, et al.
    Bioorg Chem, 2018 09;79:179-189.
    PMID: 29763804 DOI: 10.1016/j.bioorg.2018.05.003
    Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 1-13 and bis-chalcones 14-18 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05-2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure-activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.
    Matched MeSH terms: Models, Molecular
  12. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Models, Molecular
  13. Jothi L, Neogi S, Jaganathan SK, Nageswaran G
    Biosens Bioelectron, 2018 May 15;105:236-242.
    PMID: 29412948 DOI: 10.1016/j.bios.2018.01.040
    A novel nitrogen/argon (N2/Ar) radio frequency (RF) plasma functionalized graphene nanosheet/graphene nanoribbon (GS/GNR) hybrid material (N2/Ar/GS/GNR) was developed for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Various nitrogen mites introduced into GS/GNR hybrid structure was evidenced by a detailed microscopic, spectroscopic and surface area analysis. Owing to the unique structure and properties originating from the enhanced surface area, nitrogen functional groups and defects introduced on both the basal and edges, N2/Ar/GS/GNR/GCE showed high electrocatalytic activity for the electrochemical oxidations of AA, DA, and UA with the respective lowest detection limits of 5.3, 2.5 and 5.7 nM and peak-to-peak separation potential (ΔEP) (vs Ag/AgCl) in DPV of 220, 152 and 372 mV for AA/DA, DA/UA and AA/UA respectively. Moreover, the selectivity, stability, repeatability and excellent performance in real time application of the fabricated N2/Ar/GS/GNR/GCE electrode suggests that it can be considered as a potential electrode material for simultaneous detection of AA, DA, and UA.
    Matched MeSH terms: Models, Molecular
  14. Ling I, Taha M, Al-Sharji NA, Abou-Zied OK
    PMID: 29316482 DOI: 10.1016/j.saa.2018.01.005
    The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27Å, which was closely reproduced by the docking analysis (29Å) and MD simulation (32Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.
    Matched MeSH terms: Models, Molecular*
  15. Nakashima M, Kato M, Aoto K, Shiina M, Belal H, Mukaida S, et al.
    Ann Neurol, 2018 04;83(4):794-806.
    PMID: 29534297 DOI: 10.1002/ana.25208
    OBJECTIVE: The cytoplasmic fragile X mental retardation 1 interacting proteins 2 (CYFIP2) is a component of the WASP-family verprolin-homologous protein (WAVE) regulatory complex, which is involved in actin dynamics. An obvious association of CYFIP2 variants with human neurological disorders has never been reported. Here, we identified de novo hotspot CYFIP2 variants in neurodevelopmental disorders and explore the possible involvement of the CYFIP2 mutants in the WAVE signaling pathway.

    METHODS: We performed trio-based whole-exome sequencing (WES) in 210 families and case-only WES in 489 individuals with epileptic encephalopathies. The functional effect of CYFIP2 variants on WAVE signaling was evaluated by computational structural analysis and in vitro transfection experiments.

    RESULTS: We identified three de novo CYFIP2 variants at the Arg87 residue in 4 unrelated individuals with early-onset epileptic encephalopathy. Structural analysis indicated that the Arg87 residue is buried at an interface between CYFIP2 and WAVE1, and the Arg87 variant may disrupt hydrogen bonding, leading to structural instability and aberrant activation of the WAVE regulatory complex. All mutant CYFIP2 showed comparatively weaker interactions to the VCA domain than wild-type CYFIP2. Immunofluorescence revealed that ectopic speckled accumulation of actin and CYFIP2 was significantly increased in cells transfected with mutant CYFIP2.

    INTERPRETATION: Our findings suggest that de novo Arg87 variants in CYFIP2 have gain-of-function effects on the WAVE signaling pathway and are associated with severe neurological disorders. Ann Neurol 2018;83:794-806.

    Matched MeSH terms: Models, Molecular
  16. Jusoh N, Zainal H, Abdul Hamid AA, Bunnori NM, Abd Halim KB, Abd Hamid S
    J Mol Model, 2018 Mar 15;24(4):93.
    PMID: 29546582 DOI: 10.1007/s00894-018-3619-6
    Recent outbreaks of highly pathogenic influenza strains have highlighted the need to develop new anti-influenza drugs. Here, we report an in silico study of carvone derivatives to analyze their binding modes with neuraminidase (NA) active sites. Two proposed carvone analogues, CV(A) and CV(B), with 36 designed ligands were predicted to inhibit NA (PDB ID: 3TI6) using molecular docking. The design is based on structural resemblance with the commercial inhibitor, oseltamivir (OTV), ligand polarity, and amino acid residues in the NA active sites. Docking simulations revealed that ligand A18 has the lowest energy binding (∆Gbind) value of -8.30 kcal mol-1, comparable to OTV with ∆Gbind of -8.72 kcal mol-1. A18 formed seven hydrogen bonds (H-bonds) at residues Arg292, Arg371, Asp151, Trp178, Glu227, and Tyr406, while eight H-bonds were formed by OTV with amino acids Arg118, Arg292, Arg371, Glu119, Asp151, and Arg152. Molecular dynamics (MD) simulation was conducted to compare the stability between ligand A18 and OTV with NA. Our simulation study showed that the A18-NA complex is as stable as the OTV-NA complex during the MD simulation of 50 ns through the analysis of RMSD, RMSF, total energy, hydrogen bonding, and MM/PBSA free energy calculations.
    Matched MeSH terms: Models, Molecular*
  17. Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, et al.
    Interdiscip Sci, 2018 Mar;10(1):157-168.
    PMID: 27475956 DOI: 10.1007/s12539-016-0180-9
    We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.
    Matched MeSH terms: Models, Molecular
  18. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
    Matched MeSH terms: Models, Molecular
  19. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
    Matched MeSH terms: Models, Molecular
  20. Zengin G, Abdallah HH, Dogan A, Mollica A, Aumeeruddy-Elalfi Z, Mahomoodally MF
    Food Chem Toxicol, 2018 Jan;111:423-431.
    PMID: 29198858 DOI: 10.1016/j.fct.2017.11.055
    The potentiality of bioactive phenolic compounds may result in plant extracts having multiple biological activities. The aim of this study was to investigate into the biological activities of the methanolic, ethyl acetate, and water extracts of Tchihatchewia isatidea Boiss, an endemic medicinal plant of Turkey. The phenolic compositions of the extracts were confirmed using RP-HPLC. Extracts were screened for their potential antioxidant through a panoply of assays; their anti-diabetic potential, and plausible inhibitory activity against tyrosinase and acetylcholinesterase. Molecular modelling methods were also used to assess the docking properties of phenolic compounds on tyrosinase. The major and most abundant compounds were rosmarinic acid (570 ± 14 μg/g extract in the methanolic extract), ferrulic acid (336 ± 6 μg/g extract in the methanolic extract), (+)-catechin (340 ± 4 μg/g extract in the water extract), apigenin (182 ± 4 μg/g extract in the methanolic extract), and epicatechin (188 ± 12 μg/g extract in the water extract). Radical scavenging, reducing capacity, and metal chelating activities were detected in the extracts, with preponderance activity observed in the methanolic extract. In conclusion, the potential clinical applications observed during this study may provide new insights into the molecular aspect particularly for neuroprotective and anti-diabetic mechanisms involving oxidative stress.
    Matched MeSH terms: Models, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links