Displaying publications 81 - 100 of 630 in total

Abstract:
Sort:
  1. Ahmad Nadzirin I, Chor ALT, Salleh AB, Rahman MBA, Tejo BA
    Comput Biol Chem, 2021 Jun;92:107487.
    PMID: 33957477 DOI: 10.1016/j.compbiolchem.2021.107487
    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease affecting about 0.24 % of the world population. Protein arginine deiminase type 4 (PAD4) is believed to be responsible for the occurrence of RA by catalyzing citrullination of proteins. The citrullinated proteins act as autoantigens by stimulating an immune response. Citrullinated α-enolase has been identified as one of the autoantigens for RA. Hence, α-enolase serves as a suitable template for design of potential peptide inhibitors against PAD4. The binding affinity of α-enolase-derived peptides and PAD4 was virtually determined using PatchDock and HADDOCK docking programs. Synthesis of the designed peptides was performed using a solid phase peptide synthesis method. The inhibitory potential of each peptide was determined experimentally by PAD4 inhibition assay and IC50 measurement. PAD4 assay data show that the N-P2 peptide is the most favourable substrate among all peptides. Further modification of N-P2 by changing the Arg residue to canavanine [P2 (Cav)] rendered it an inhibitor against PAD4 by reducing the PAD4 activity to 35 % with IC50 1.39 mM. We conclude that P2 (Cav) is a potential inhibitor against PAD4 and can serve as a starting point for the development of even more potent inhibitors.
    Matched MeSH terms: Molecular Docking Simulation
  2. Feroz SR, Mohamad SB, Bujang N, Malek SN, Tayyab S
    J Agric Food Chem, 2012 Jun 13;60(23):5899-908.
    PMID: 22624666 DOI: 10.1021/jf301139h
    Interaction of flavokawain B (FB), a multitherapeutic flavonoid from Alpinia mutica with the major transport protein, human serum albumin (HSA), was investigated using different spectroscopic probes, i.e., intrinsic, synchronous, and three-dimensional (3-D) fluorescence, circular dichroism (CD), and molecular modeling studies. Values of binding parameters for FB-HSA interaction in terms of binding constant and stoichiometry of binding were determined from the fluorescence quench titration and were found to be 6.88 × 10(4) M(-1) and 1.0 mol of FB bound per mole of protein, respectively, at 25 °C. Thermodynamic analysis of the binding data obtained at different temperatures showed that the binding process was primarily mediated by hydrophobic interactions and hydrogen bonding, as the values of the enthalpy change (ΔH) and the entropy change (ΔS) were found to be -6.87 kJ mol(-1) and 69.50 J mol(-1) K(-1), respectively. FB binding to HSA led to both secondary and tertiary structural alterations in the protein as revealed by intrinsic, synchronous, and 3-D fluorescence results. Increased thermal stability of HSA in the presence of FB was also evident from the far-UV CD spectral results. The distance between the bound ligand and Trp-214 of HSA was determined as 3.03 nm based on the Förster resonance energy transfer mechanism. Displacement experiments using bilirubin and warfarin coupled with molecular modeling studies assigned the binding site of FB on HSA at domain IIA, i.e., Sudlow's site I.
    Matched MeSH terms: Molecular Docking Simulation*
  3. Kabir MZ, Feroz SR, Mukarram AK, Alias Z, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2016 Aug;34(8):1693-704.
    PMID: 26331959 DOI: 10.1080/07391102.2015.1089187
    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.
    Matched MeSH terms: Molecular Docking Simulation*
  4. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
    Matched MeSH terms: Molecular Docking Simulation
  5. Kandandapani S, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2020 Sep;38(14):4134-4142.
    PMID: 31552810 DOI: 10.1080/07391102.2019.1673210
    Tyrphostin 9 (Tyr 9) is a potent platelet-derived growth factor receptor (PDGFR) inhibitor, which induces apoptosis in various cancer cell types. The binding of Tyr 9 to the major transport protein, human serum albumin (HSA) was investigated using several spectroscopic techniques and molecular docking method. Fluorescence quenching titration results showed progressive decrease in the protein fluorescence with increasing drug concentrations. A decreasing trend of the Stern-Volmer constant, Ksv with increasing temperature characterized the drug-induced quenching as static quenching, thus pointed towards the formation of Tyr 9-HSA complex. The binding constant of Tyr 9-HSA interaction was found to lie within the range 3.48-1.69 × 105 M-1 at three different temperatures, i.e. 15 °C, 25 °C and 35 °C, respectively and suggested intermediate binding affinity between Tyr 9 and HSA. The drug-HSA complex seems to be stabilized by hydrophobic forces, van der Waals forces and hydrogen bonds, as suggested from the thermodynamic data as well as molecular docking results. The far-UV and the near-UV CD spectral results showed slight alteration in the secondary and tertiary structures, respectively, of the protein upon Tyr 9 binding. Interaction of Tyr 9 with HSA also produced microenvironmental perturbations around protein fluorophores, as evident from the three-dimensional fluorescence spectral results but increased protein's thermal stability. Both competitive drug binding results and molecular docking analysis suggested Sudlow's Site I of HSA as the preferred Tyr 9 binding site. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  6. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2021 Feb;39(2):691-702.
    PMID: 31913089 DOI: 10.1080/07391102.2020.1713215
    Binding of lumefantrine (LUM), an antimalarial drug to human serum albumin (HSA), the main carrier protein in human blood circulation was investigated using fluorescence quenching titration, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking. LUM-induced quenching of the protein (HSA) fluorescence was characterized as static quenching, as revealed by the decrease in the value of the Stern-Volmer quenching constant, K
    sv
    with increasing temperature, thus suggesting LUM-HSA complex formation. This was also confirmed from the UV-vis absorption spectral results. Values of the association constant, Ka for LUM-HSA interaction were found to be within the range, 7.27-5.01 × 104 M-1 at three different temperatures, i.e. 288 K, 298 K and 308 K, which indicated moderate binding affinity between LUM and HSA. The LUM-HSA complex was stabilized by hydrophobic interactions, H-bonds, as well as van der Waals forces, as predicted from the thermodynamic data (ΔS = +50.34 J mol-1 K-1 and ΔH = -12.3 kJ mol-1) of the binding reaction. Far-UV and near-UV CD spectral results demonstrated smaller changes in both secondary and tertiary structures of HSA upon LUM binding, while three-dimensional fluorescence spectra suggested alterations in the microenvironment around protein fluorophores (Trp and Tyr). LUM binding to HSA offered stability to the protein against thermal stress. Competitive drug displacement results designated Sudlow's Site I, located in subdomain IIA of HSA as the preferred binding site of LUM on HSA, which was well supported by molecular docking analysis.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  7. Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Jun 15;181:254-263.
    PMID: 28376387 DOI: 10.1016/j.saa.2017.03.059
    Binding studies between a multi-targeted anticancer drug, sunitinib (SU) and human serum albumin (HSA) were made using fluorescence, UV-vis absorption, circular dichroism (CD) and molecular docking analysis. Both fluorescence quenching data and UV-vis absorption results suggested formation of SU-HSA complex. Moderate binding affinity between SU and HSA was evident from the value of the binding constant (3.04×104M-1), obtained at 298K. Involvement of hydrophobic interactions and hydrogen bonds as the leading intermolecular forces in the formation of SU-HSA complex was predicted from the thermodynamic data of the binding reaction. These results were in good agreement with the molecular docking analysis. Microenvironmental perturbations around Tyr and Trp residues as well as secondary and tertiary structural changes in HSA upon SU binding were evident from the three-dimensional fluorescence and circular dichroism results. SU binding to HSA also improved the thermal stability of the protein. Competitive displacement results and molecular docking analysis revealed the binding locus of SU to HSA in subdomain IIA (Sudlow's site I). The influence of a few common ions on the binding constant of SU-HSA complex was also noticed.
    Matched MeSH terms: Molecular Docking Simulation
  8. Musa KA, Ridzwan NFW, Mohamad SB, Tayyab S
    Biopolymers, 2020 Feb;111(2):e23337.
    PMID: 31691964 DOI: 10.1002/bip.23337
    The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104  M-1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol-1 K-1 and ΔH = +13.09 kJ mol-1 ) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis.
    Matched MeSH terms: Molecular Docking Simulation*
  9. Kabir MZ, Hamzah NAB, Ghani H, Mohamad SB, Alias Z, Tayyab S
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Jan 15;189:485-494.
    PMID: 28843881 DOI: 10.1016/j.saa.2017.08.051
    Interaction of an anticancer drug, vandetanib (VDB) with a ligand transporter, lysozyme (LYZ) was explored using multispectroscopic techniques, such as fluorescence, absorption and circular dichroism along with computational analysis. Fluorescence data and absorption results confirmed VDB-LYZ complexation. VDB-induced quenching was characterized as static quenching based on inverse correlation of KSV with temperature as well as kq values. The complex was characterized by the weak binding constant (Ka=4.96-3.14×103M-1). Thermodynamic data (ΔS=+12.82Jmol-1K-1; ΔH=-16.73kJmol-1) of VDB-LYZ interaction revealed participation of hydrophobic and van der Waals forces along with hydrogen bonds in VDB-LYZ complexation. Microenvironmental perturbations around tryptophan and tyrosine residues as well as secondary and tertiary structural alterations in LYZ upon addition of VDB were evident from the 3-D fluorescence, far- and near-UV CD spectral analyses, respectively. Interestingly, addition of VDB to LYZ significantly increased protein's thermostability. Molecular docking results suggested the location of VDB binding site near the LYZ active site while molecular dynamics simulation results suggested stability of VDB-LYZ complex. Presence of Mg2+, Ba2+ and Zn2+ was found to interfere with VDB-LYZ interaction.
    Matched MeSH terms: Molecular Docking Simulation*
  10. Kandandapani S, Kabir MZ, Ridzwan NFW, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2022 Nov;40(18):8312-8323.
    PMID: 33870854 DOI: 10.1080/07391102.2021.1911850
    Pazopanib (PZP) is a multi-targeting tyrosine kinase inhibitor and is currently approved by FDA for the treatment of soft tissue sarcoma and renal cancer. Molecular interaction mechanism of PZP with human serum albumin (HSA) was explored under simulated physiological conditions (pH = 7.4), using fluorescence and UV absorption spectroscopy along with computational methods. Based on the inverse correlation between the Stern-Volmer constant (Ksv) and temperature, it was concluded that PZP quenched the protein fluorescence through static quenching mechanism. This was also confirmed from the UV-vis absorption spectral results. Moderate binding affinity between PZP and HSA was evident from the Ka values (5.51 - 1.05 × 105 M-1) while PZP-HSA complex formation was driven by hydrophobic and van der Waals interactions as well as hydrogen bonds, as revealed by positive entropy change (ΔS = +98.37 J mol-1 K-1) and negative enthalpy change (ΔH = -60.31 kJ mol-1). Three-dimensional fluorescence spectral results disclosed microenvironmental perturbations around Trp and Tyr residues of the protein upon PZP binding. Interestingly, the addition of PZP to HSA significantly protected the protein against thermal stress. Competitive drug displacement results obtained with warfarin, phenylbutazone and diazepam elucidated Sudlow's Site I, positioned in subdomain IIA of HSA, as the preferred binding site of PZP which was well supported by molecular docking analysis, while molecular dynamics simulation results suggested the stability of the PZP-HSA complex.Communicated by Vsevolod Makeev.
    Matched MeSH terms: Molecular Docking Simulation
  11. Abubakar M, Mohamed SB, Abd Halim AA, Tayyab S
    PMID: 36868020 DOI: 10.1016/j.saa.2023.122543
    This study explores the plausible molecular interaction between a potent hepatitis C virus inhibitor, PSI-6206 (PSI), and human serum albumin (HSA), a primary transporter in blood plasma. Results obtained from both computational viz. molecular docking and molecular dynamics (MD) simulation and wet lab techniques such as UV absorption, fluorescence, circular dichroism (CD), and atomic force microscopy (AFM) complemented each other. While docking results identified PSI binding to subdomain IIA (Site I) of HSA by forming six hydrogen bonds, MD simulations signified the complex stability throughout the 50,000 ps. A consistent cutback in the Stern-Volmer quenching constant (Ksv) along with rising temperatures supported the static mode of fluorescence quenching in response to PSI addition and implied the development of the PSI-HSA complex. This discovery was backed by the alteration of the HSA UV absorption spectrum, a larger value (>1010 M-1.s-1) of the bimolecular quenching rate constant (kq) and the AFM-guided swelling of the HSA molecule, in the presence of PSI. Moreover, the fluorescence titration results revealed a modest binding affinity (4.27-6.25×103 M-1) in the PSI-HSA system, involving hydrogen bonds, van der Waals and hydrophobic interactions, as inferred from ΔS = + 22.77 J mol-1 K-1 and ΔH = - 11.02 KJ mol-1values. CD and 3D fluorescence spectra reminded significant adjustment in the 2° and 3° structures and modification in the Tyr/Trp microenvironment of the protein in the PSI-bound state. The results obtained from drug competing experiments also advocated the binding location of PSI in HSA as Site I.
    Matched MeSH terms: Molecular Docking Simulation
  12. Feroz SR, Mohamad SB, Lee GS, Malek SN, Tayyab S
    Phytomedicine, 2015 Jun 01;22(6):621-30.
    PMID: 26055127 DOI: 10.1016/j.phymed.2015.03.016
    BACKGROUND: 6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties.

    PURPOSE: The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA).

    METHODS: Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments.

    RESULTS: Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA.

    CONCLUSION: All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds.

    Matched MeSH terms: Molecular Docking Simulation
  13. Rehman F, Abubakar M, Ridzwan NFW, Mohamad SB, Abd Halim AA, Tayyab S
    PMID: 38061108 DOI: 10.1016/j.saa.2023.123641
    The binding mode of antineoplastic antimetabolite, floxuridine (FUDR), with human serum albumin (HSA), the leading carrier in blood circulation, was ascertained using multi-spectroscopic, microscopic, and computational techniques. A static fluorescence quenching was established due to decreased Ksv values with rising temperatures, suggesting FUDR-HSA complexation. UV-vis absorption spectral results also supported this conclusion. The binding constant, Ka values, were found within 9.7-7.9 × 103 M-1 at 290, 300, and 310 K, demonstrating a moderate binding affinity for the FUDR-HSA system. Thermodynamic data (ΔS = +46.35 J.mol-1.K-1 and ΔH = -8.77 kJ.mol-1) predicted the nature of stabilizing forces (hydrogen-bonds, hydrophobic, and van der Waals interactions) for the FUDR-HSA complex. Circular dichroism spectra displayed a minor disruption in the protein's 2° and 3° structures. At the same time, atomic force microscopy images proved variations in the FUDR-HSA surface morphology, confirming its complex formation. The protein's microenvironment around Trp/Tyr residues was also modified, as judged by 3-D fluorescence spectra. FUDR-bound HSA showed better resistance against thermal stress. As disclosed from ligand displacement studies, the FUDR binding site was placed in subdomain IIA (Site I). Further, the molecular docking analysis corroborated the competing displacement studies. Molecular dynamics evaluations revealed that the complex achieved equilibrium during simulations, confirming the FUDR-HSA complex's stability.
    Matched MeSH terms: Molecular Docking Simulation
  14. Tamilarasan R, Subramani A, Sasikumar G, Ganapathi P, Karthikeyan S, Ponnusamy S, et al.
    Sci Rep, 2023 Mar 17;13(1):4453.
    PMID: 36932171 DOI: 10.1038/s41598-023-31476-0
    Under conventional and silica-supported Muffle furnace methods, water-soluble substituted trimeric triaryl pyridinium cations with various inorganic counter anions are synthesized. The solvent-free synthesis method is superior to the conventional method in terms of non-toxicity, quicker reaction times, ease of workup, and higher yields. Trimeric substituted pyridinium salts acted as excellent catalytic responses for the preparation of Gem-bisamide derivatives compared with available literature. To evaluate the molecular docking, benzyl/4-nitrobenzyl substituted triaryl pyridinium salt compounds with VEGFR-2 kinase were used with H-bonds, π-π stacking, salt bridges, and hydrophobic contacts. The results showed that the VEGFR-2 kinase protein had the most potent inhibitory activity. Intriguingly, the compound [NBTAPy]PF6- had a strongly binds to VEGFR-2 kinase and controlled its activity in cancer treatment and prevention.
    Matched MeSH terms: Molecular Docking Simulation
  15. Obermann W, Azri MFD, Konopka L, Schmidt N, Magari F, Sherman J, et al.
    Sci Rep, 2023 Jun 08;13(1):9297.
    PMID: 37291191 DOI: 10.1038/s41598-023-35765-6
    Inhibition of eukaryotic initiation factor 4A has been proposed as a strategy to fight pathogens. Rocaglates exhibit the highest specificities among eIF4A inhibitors, but their anti-pathogenic potential has not been comprehensively assessed across eukaryotes. In silico analysis of the substitution patterns of six eIF4A1 aa residues critical to rocaglate binding, uncovered 35 variants. Molecular docking of eIF4A:RNA:rocaglate complexes, and in vitro thermal shift assays with select recombinantly expressed eIF4A variants, revealed that sensitivity correlated with low inferred binding energies and high melting temperature shifts. In vitro testing with silvestrol validated predicted resistance in Caenorhabditis elegans and Leishmania amazonensis and predicted sensitivity in Aedes sp., Schistosoma mansoni, Trypanosoma brucei, Plasmodium falciparum, and Toxoplasma gondii. Our analysis further revealed the possibility of targeting important insect, plant, animal, and human pathogens with rocaglates. Finally, our findings might help design novel synthetic rocaglate derivatives or alternative eIF4A inhibitors to fight pathogens.
    Matched MeSH terms: Molecular Docking Simulation
  16. Shi H, Ishikawa R, Heh CH, Sasaki S, Taniguchi Y
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525366 DOI: 10.3390/ijms22031274
    MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.
    Matched MeSH terms: Molecular Docking Simulation
  17. Thavoncharoensub N, Maruyama K, Heh CH, Hoong Leong K, Shi H, Shigematsu Y, et al.
    PMID: 30929604 DOI: 10.1080/15257770.2019.1586919
    8-OxodGTP is generated by the reaction between dGTP and reactive oxygen species and a considered mutagenic nucleotide. It can be incorporated into the duplex DNA during replication processes by the DNA polymerase, and thus the repair enzyme removes oxodGTP from the nucleotide pools in living cells. On the other hand, the γ-modified triphosphates show interesting properties for use as biological tools. Therefore, the γ-N-pyrenylalkyl-oxodGTP derivatives were synthesized and their effect on the enzymatic reactions were evaluated. The γ-N-pyrenylmethyl-oxodGTP was found to be accepted by the DNA polymerase just like oxodGTP, but showed a competitive inhibition property for the human oxodGTPase.
    Matched MeSH terms: Molecular Docking Simulation
  18. Cao W, Chen X, Chin Y, Zheng J, Lim PE, Xue C, et al.
    J Food Biochem, 2021 Apr 04.
    PMID: 33817806 DOI: 10.1111/jfbc.13686
    Natural compounds have tremendous potential to regulate glucose metabolism, but conventional methods for studying their bioactivities are usually labor intensive. Here, hypoglycemic properties in 22 selected food-derived compounds were examined using molecular docking. The results indicated that curcumin is an inhibitor of both α-glucosidase and dipeptidyl-peptidase 4 (DPP-4), which are important for glycemic control. These effects of curcumin were also confirmed by enzymatic determination in vitro. Furthermore, curcumin significantly improved diet-induced hyperglycemia (e.g., fasting plasma glucose levels and glycogen storage in muscle or liver) in mice. This might be attributed to its inhibitory effects on the activities of α-glucosidase and DPP-4 in vivo. Curcumin also upregulated the expression of genes (e.g., glucagon-like peptide 1) related to DPP-4 activity in the small intestine. In conclusion, curcumin is a potential ingredient of functional foods used for diet-induced hyperglycemia management. PRACTICAL APPLICATIONS: Curcumin has been widely used as a colorant in the food industry. Moreover, a growing number of studies have described its diverse biological functions, such as anti-inflammatory, anti-oxidant, and anti-angiogenic activities. Thus, curcumin is regarded as a potential ingredient in functional foods. Our results highlighted the hyperglycemic effect of curcumin, suggesting that curcumin may be included in food products for hyperglycemic patients.
    Matched MeSH terms: Molecular Docking Simulation
  19. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
    Matched MeSH terms: Molecular Docking Simulation
  20. Yeong KY, Liew WL, Murugaiyah V, Ang CW, Osman H, Tan SC
    Bioorg Chem, 2017 02;70:27-33.
    PMID: 27863748 DOI: 10.1016/j.bioorg.2016.11.005
    A series of novel cholinesterase inhibitors containing nitrobenzoate core structure were synthesized by a facile and efficient method. The structure of the novel compounds were fully characterized and confirmed by analytical as well as spectroscopic methods. Compound indicated as 2f was found to possess the best cholinesterase inhibitory activities of all the evaluated compounds. Results suggest that 2f is a selective acetylcholinesterase inhibitor, although it also inhibits butyrylcholinesterase at higher concentration. Kinetics inhibition result suggest that 2f is a mixed-mode inhibitor of acetylcholinesterase. In addition, it was found to have low cytotoxicity. Molecular docking on compound 2f was carried out to rationalize the observed in vitro enzymatic assay results. Most importantly, the potential of nitrobenzoate derivatives as cholinesterase inhibitor was shown through this study. In summary, we discovered nitrobenzoates as a new scaffold that may eventually yield useful compounds in treatment of Alzheimer's disease.
    Matched MeSH terms: Molecular Docking Simulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links